
A SUPPORT ARCHITECTURE FOR RELIABLE
DISTRIBUTED COMPUTING SYSTEMS

... ..

Prepared for

National Aeronautics and Space Administration
Langley Research Center

Under

Grm? MS. NAG-? -430

Final Report for Period November 9,1983 to December 3,1985

GEORGIA INSTITUTE OF TECH.NOLOGY
A UNIT OF THE UNIVERSlTY SYSTEM OF OE@RGIA
SCHOOL OF INFORMATION AND COMPUTER WIIEWCE
ATLANTA, GEORGIA 30332

(hASA-CF-181272) A S U P P C B l E € C H X I E C T U R E E O i i N87-283 2 5
R E L I A E L E E I S Z E I E L ? E C CCRFO'IIIC LYSTEMS

- - T H H U - - lrterim Z e c h n i c a l iitcpcrt, 9 b c v , 19E3 - 3 N87-283 27 Tec. lEeS (Georqia Itst. cf I c c C ,) 70 c Unclas
A v a i l : N l I S HC AC4/!4€ A C 1 CSCL 0 9 8 GJ/62 OC932C4

0

0

0

A Support Architecture for
Reliable Distributed Computing Systems

Interim Technical R e p o r t
November 9, 1983 - December 3 1985

From:

Endorsements:

e

e

Georgia Tech Research Corporation
Atlanta, Georgia 30332

To :

National Aeronautics and Space Administration
Langley Research Center

Grant No. : NAG-1-430

I

Martin S. McKendry
Principal Investigator
School of ICs
Geor ia Tech, Atlanta GA 30332
(4047 894-2572

e
A Support Architecture for
Reliable Distributed Systems

1. Introduction
The Clouds Project at Georgia Tech is conducting research aimed

at building a reliable distributed operating system. The primary
objectives of the Clouds operating system are:

a

0

0

t

11

21

31

41

51

61

71

The operating systems will be distributed over several sites. The
sites will have a fair degree of autonomity. Yet the distributed
system should work as an integrated system. Thus the system
should support location independency for data, users and
processes.

Reliability is a key requirement. Large distributed systems use
significant number of hardware components and communication
interfaces, all of which are prone to failures. The system should
be able to function normally even with several failed components.

The processing environment should guard against both hardware and
software failures. The permanent data stored in the system should
be consistent.

Distributed systems often have dynamic configurations. That is,
newer hardware gets added, or faulty hardware is removed. The
system function should not be hampered by such maintainance
chores. Thus the system should be dynamically reconfigurable.

The system should be capable of monitoring itself. This encom-
passes hardware monitoring for keeping track of hardware failures
as well as monitoring key software resources (for example dae-
mons, network servers, and so on.) On detection of failure the
system should be able to self-heal (restart daemons) or self-
reconfigure (eliminate faulty sites) .
The users should be shielded from both the configuration of the
system (site independence) as well as its failure modes. For
example, if the site a user is connected to fails, he should be
transferred to an active site transparently.

Many of the above functions can be implemented on conventional
systems, but would make the system extremely slow. Thus effi-
ciency is an important design criteria.

The above requirements can be handled by a distributed system and
have been designed into the Clouds operating system. Most of the func-
tions have been designed into the kernel of the system, without making
the kernel too complex, bulky or inefficient. The design philosophies
adopted for the Clouds operating system are:

2

11

21

31

41

51

61

71

An object-based, passive system, paradigm is used as the basic
architecture. All system functions, data, user programs and
resources are encapsulated as passive objects. The objects can be
invoked at appropriate entry points by processes.

The objects in Clouds represent nearly everything the system has
to offer. The site independence philosophy is implemented by
making the object name space (system names) flat and site
independent. When a process on any machine invokes an object
located anywhere, no site names are used. Hence the location of
any particular object is unknown to a process.

Reliability is achieved through two techniques. One of them is
the action and recovery concept. The action mechanisms are sup-
ported at the kernel level. Actions are atomic units of work. Any
unfinished or failed action is recovered and has no effect until
it completes. The recovery mechanisms are supported inside every
object an action touches.

Reliability is further extended by the self monitoring and self
reconfiguration subsystems. This is a set of monitoring processes
that use "probes" to keep track of all key system resources, both
hardware and software. On detection of failed or flaky com-
ponents, the monitoring system invokes the reconfiguration system
which rectifies or eliminates (if possible) the faulty com-
ponents, and initiates recovery of affected actions. The monitor-
ing and reconfiguration subsystems are also monitored by the mon-
itoring system.

The consistency requirements of the data are handled by the
recovery mechanisms and by concurrency control techniques. The
concurrency control is handled by synchronization paradigms that
are an integral part of the object handling primitives. The syn-
chronization of processes executing in an object is handled
automatically by semaphores that are a part of the object. This
gives rise to a two-phase locking algorithm that is supported by
the kernel as a default. The object programmer has the choice of
overriding these controls and use custom built concurrency con-
trol, depending upon the application. It is also possible to turn
off the default recovery and commit strategies.

Efficiency has been of concern. The object invocation, recovery
and synchronization are handled by the kernel. It turns out that
these canbe done at the kernel level without much overhead.
Since the entire Clouds design is primarily based on object mani-
pulations, invocation and synchronization will be the most used
operations. Implementing them at the kernel level will result in
an efficient system.

The site independence at the user level is handled in part by
using intelligent terminals. The user terminals are not hard-
wired into any machine or site, but are on an ethernet, accessi-
ble by any site. Each user session is, of course, handled by one

(I

II

I

4

a

I

a

J

e
3

e

e

a

2.

particular site, but any failure causing the controlling site to
be unaccessible causes the user to be transferred to another
site. This is handled cooperatively by the user terminal and the
other sites. Thus the user terminals are actually intelligent
microprocesser systems on the Clouds ethernet. In addition to
cooperation with the Clouds network, the user terminals run "Bub-
bles", a multiwindowing, user-friendly interface to Clouds.

Procrress
The following is a brief report of the current status of the

implementation of Clouds.

2.1. EsUipem
The test equipment for implementing Clouds was funded by the

National Science Foundation and has arrived. Three VAX/750 computers
interconnected by a ethernet was installed in Noveniber 1984. They have
been heavily used to develop the Clouds kernel and allied software
described later. Three IBM-PC/XT computers, arrived in July 1985 and
are being used to develop the intelligent terminal interface to
Clouds. One IBM-PC/AT is scheduled to arrive soon and will be used as
the primary development system for Bubbles and the ethernet handling
code for the terminal interface.

2.2. clouds Kernel Desian
The kernel design has been through several design phases and is

nearly complete. The design effort has produced a cohesive set of
implementation guides to the entire Clouds kernel.

The current designs are based on assumptions about efficiency and
ease of implementation that seem to be intuitively clear at this time.
We may have to reiterate some design decisions and modify stra-
tegies after more hard data is available from the implementation
experience.

2.2.1. erne1 The Clouds kernel consists of several
major subsystems : the object mariager , which is responsible for mapping
objects into virtual memory and invoking object operations (including
the initiation of remote object requests); the process manager, which
controls the slave process pool available on each node in a Clouds
system and also supplies primitives for synchronization and process
dispatch; the storage manager, which provides permanent storage for
object data and paging storage for the virtual memory system; the com-
munications manager, which is responsible for controlling inter-
machine communications (currently via the ethernet); and the action
manager, which is responsible for managing action events. The subsys-
tems have been in various stages of completion, but have recently been
integrated so a fairly complete, running version of the Clouds kernel
exists. The current status of each of the subsystems is described
below. For more details, see the attached technical reports (Pitt851
and [Spaf84]).

some

4

2.2.1.1. Object Ma- The object management subsystem is
almost completely coded and substantial sections have been tested. In
particular, a primitive remote procedure call (RPC) mechanism has been
implemented and tested. The complete RF'C mechanism implementation
awaits the implementation of the action management subsystem. Object
mapping is implemented and is being tested with the virtual memory
support provided by the storage management subsystem. Page fault han-
dling will be done in tandem by the object manager and the storage
manager. After the original fault is caught by the system, the object
manager determines where the fault occurred (in a client object, in
system space, or in a per process space) and makes a storage manage-
ment call passing that information. Storage management is then
responsible for selecting a hysical page (through a call provided by
the virtual memory system7 and filling that physical page from the
proper block on secondary storage.

The object invocation routines are being refined and implemented.
Object and storage management are required to interact heavily to pro-
cess an object operation call. Object management must first determine
that the operation call is valid. It then initiates a search (possi-
bly a network wide search) for the object. The storage management
subsystem is responsible for determining whether the object exists on
its local node and for activating the disk segment for the object if
the object is found. Object management resumes control to initiate
the operation call. The object management interface also provides the
hooks necessary for the eventual presence of the action management
subsystem.

Because of the cooperation required between object, storage, and
action management, several iteration of the interface design were made
before finally settling with the current design. It is felt that the
current design meets all the requirements of the various subsystems
involved.

The object manager and action manager normally supply certain
special object operations, such as "create instance", "commit action",
and "destroy action." Clouds programmers are able to reprogram these
operations, so that in addition to performing necessary functions, the
operations to the particular initializations, customized recovery
operations, and cleanup that are specified. The object and action
manager provide this support as part of the kernel interface, which
can be accessed through the runtime system used by the Aeolus program-
ming language.

2.2.1.2. Process Manaaement The process manager is completely coded
and tested. It provides a very rich set of synchronization primi-
tives, which include semaphores, read/write locks, and general event
mechanisms. Facilities for blocking with a time-out value are
included. Code for the initialization of the slave process pool is
running, as it that for dispatching processes. Slave processes are
created at system initialization and are available for use as requests
arrive. This accelerates the creation of processes for requests such
as RPC's. The process management subsystem supports a primitive

0

0

0

a

5

round-robin scheduler with five priority levels.

2.2.1.3. Communication Management The communications management
subsystem currently consists of the ethernet driver and associated
software. This code has been tested and integrated into the Clouds
kernel. The driver supports communications protocols not only for
Clouds machines but also for machines running Unix 4.2bsd. Support
for communication with Unix systems was implemented because it pro-
vides several possibilities supporting further development of the
Clouds system. One such possibility is the development of a virtual
disk for the Clouds kernel. Clouds kernel device requests to the
storage manager could actually be handled by a disk running under a
Unix system using the Clouds-Unix protocol on the Ethernet. This
would provide either additional devices (very quickly, since the same
interface at the Clouds end could be re-used) and also a facility for
dumping status information for offline debugging. The communications
subsystem recently was interfaced with the object management subsystem
to provide a primitive working RPC mechanism.

2.2.1.9. Storaqe merit The storage management subsystem of the
kernel consists of three classes of objects: devices, partitions, and
segments. These object classes contain the structures and algorithms
required to provide recoverable object data under the Clouds kernel.
The subsystem is primarily concerned with the storage of on secondary
storage devices, but is also necessarily involved in the management of
virtual memory and action/object management.

storage
disk), that supports not only the conventional device operations (read
and writes), but also provides a mechanism whereby the storage manager
can insure that writes to devices performed by actions are done before
the action completes. System failures will not catch object data in
an inconsistent state. By having this support at such a low level, the
storage manager relieves action management of some of its burden. In
fact, the storage manager provides action management with a few simple
calls that perform all the functions required to provide recoverable
transfers of data to secondary storage.

The storage available on the RL02 device is not extensive (10
megabytes per pack) and the RL02 is not meant to be the primary drive
for the Clouds system. However, it does provide a suitable testing
device. A driver object is under development for another DEC drive,
the RA81. This is a more sophisticated and larger drive (456 mega-
bytes, fixed medium) than the RL02 and consequently the implementation
of the RA81 object has been more complex than that for the RLO1. The
device object for this device in partially implemented and is being
tested incrementally.

It should be noted that the design and development of the various
devices discussed (and indeed those that will come later) have all
been done using a standard interface to the Clouds system. This will
allow us to bring new classes of devices onto the Clouds system with
little difficulty. The only difference between the RL02 device driver

There is a working device object (for the RL02 removable

m

e

0

e

0

8

6

and the one being developed for the RA81 is that the RL02 ob'ect was
written assuming only one such device existed (for simplicityj. The
RA81 object is being written for multiple drives per controller which
will require some structural changes for the kernel, which have
already been designed.

The device objects are being implemented with the idea that dev-
ices may be dynamically added to, removed from, and initialized on a
running Clouds system. Currently, support is provided to allow opera-
tors to manually mount, unmount, or initialize devices, but further
work could be done to automate this process.

The partition object is almost complete and running. Partitions
can be created and removed from a device (dynamically, although sup-
port for this is not as clean as would be liked), read and write
operations on partition blocks are available, storage may be allocated
and deallocated from the partition, and the partition directory may
add, remove, or locate items on the partition. The major component
missing from the partition object is the partition activate call.
This call brings certain partition structures into virtual memory and
performs consistency checks on the partition data. Also the partition
activation call initiates the action management cleanup that is per-
formed by the storage manager. This processing is currently being
integrated into the activation call.

The code for segment object is undergoing testing and final
implementation. The segment object provides an interface to the
storage management subsystem for the rest of the kernel. Primarily,
the interface is through the abstraction of the segment type. The
segment type is generally (though not always) simply a convenient
alternate view of some client or system object (as a sequence of unin-
terpretted bytes). This allows the kernel to handle the various types
of objects in a uniform manner. Coding necessary for handling seg-
ment level reads and writes and for handling page faults (in coopera-
tion with object management) is complete and is in testing.

The segment object also provides the recoverability of object
data. It provides the action management subsystem with a set of rou-
tines which transfer the data from virtual memory to secondary storage
in a consistent manner. When invoked by the action management subsys-
tem, the routines determine which parts of an object were modified by
an action, and how to transfer the modified portions to secondary
storage. The algorithms that do this are detailed in pitts851, along
with an overall description of the storage manager. The algorithms
described in the referenced report use the technique of shadowing
current versions of a segment, making the shadow versions permanent on
action commit. The data recovery routines are still under-going
implementation at present. Since action management will not be avail-
able before the completion of the storage manager, testing of the
recovery features of storage management will be done by simulating
requests by the action management system.

a

4

7

0

0

e

0

0

*

e

2.2.1.5. Action Manaaement The design of action management is com-
plete. It includes several areas, but primarily it is concerned with
the control of action events in the Clouds system. Other features
included in the action management design are a simple algorithm for
global object searches, the use of a global, kernel database. a time
driven orphan detection mechanism (developed by Martin McKendry and
Maurice Herlihy at Camegie-Mellon University) , a design for a global
Lamport clock for the Clouds system which supports the orphan detec-
tion mechanism, and a design for a generalized locking facility for
programming objects. Although coding has not started, the design
includes enough implementation details so that this effort can proceed
quickly.

The orphan detection algorithm mentioned above is quite different
than that originally described in [Allc83a]. The new orphan detection
mechanism attaches two time values to all action requests, in addition
to the usual time-out value for deadlock recovery. These values are a
quiesce time and a release time. After the quiesce time for an action
has passed that action can initiate no further requests. The release
time indicates the earliest time an action can release any locks that
it hold. The release time is always greater than the quiesce time.
Orphan are prevented from producing erroneous results by the eventual
passinq of their quiesce times. Generally, the period until an
action s qyiesce time is not long, requiring a refresh phase which
increases first the release time and then the quiesce time of the
action. This allows the action to continue work.

Action management's lock facility allows the creation of not only
simple read/write locks, but also locks with more complex compatibil-
ity modes. For example, it is possible to create a lock with more
than two modes and then specify how the modes conflict. In fact, one
could create read/write locks in this fashion, but it is expected that
the read/write locking style will be popular enough to justify a
separate implementation. Also, locks need not be create for a
specific instance of a structure, but may be defined over a whole
domain of such structures. The data (a file, for example) need not
exist at the time the lock is taken. This flexible locking mechanism,
along with the redefinition of special object operations, allows the
Clouds programmer to customize the recovery of the objects and action
that are developed in addition to having available the default system
recovery.

The search algorithm, as mentioned, is simple but attempts to do
as much as possible to limit searches for objects. This is because in
order maintain the location independence of objects from the sites on
which they reside, the local object cannot determine the where an
object is by examining the capability for the object.
be local or remote; invocations should be handled transparently.
the number of nodes in a Clouds system increases, the effort and time
spent searching for an object could become quite significant. There-
fore, information is kept in a global state database which aids in the
search. The information in this low-level database is not guaranteed
to be exact or complete. It does provide some hint of where the

The Object mz

8

object might be by maintaining several sorts of information; the last
place an object was found, where the object was moved by the system,
or even where the device on which the object last resided was moved.
Always, as a heuristic, the node whose name is contained in the birth-
place of the object is a high priority.

The global state database was mentioned as a source for clues for
the object search, but it is actually more than that. Many types of
system information is placed in the database, then to be propagated
through the network using the algorithms described [Allc83a]. In par-
ticular, action state information, workloads, uplists, and other sys-
tem imformation can be propagated in this manner.

2.2.2. CQmgiler -
The systems programming language for Clouds implementation is

Aeolus. Currently all development is being done on a VAX running Unix
4.2bsd, using "C" . This is pending the full implementation and testing
of the Aeolus Compiler. Once the compiler is implemented, and it
interfaces to the Clouds system (the compiler generates objects),
further development will use Aeolus.

The compiler implementation for Aeolus is currently underway. The
Amsterdam Compiler Kit (ACK) is being used to generate code for both
the Clouds system running on VAXen, and the Bubbles system running on
8088/8086 based systems (IBM-PC/XT/AT) . Work on semantic routines for
Aeolus is proceeding in parallel with the development of intermediate
code for ACK. This work is being done in Pastel, an extended Pascal
dialect.

2.3. Fault Tolerance Probes
Use of probes in monitoring and fault tolerance is being studied.

Probes are somewhat like messages, but unlike messages they are han-
dled by traps handlers in processes and special probe handlers in
objects. Thus probes can be sent to both passive as well as active
entities. This gives rise to a powerful paradigm that is useful for a
lot of activities, from monitoring, status enquiries to emergency mes-
sages. An application of probes to fault tolerant scheduling has been
discussed in [McKe84c].

2.4. User Interfaces
The Clouds user interfaces are at several levels. The Clouds sys-

tem runs a shell that allows hierarchical name spaces and common shell
functions as the service routine for each user. The interface to this
shell is via the intelligent terminals. This part of Clouds is still
under the design phases.

The Human Factors group at Georgia Tech is looking at advanced
user interfaces which will use the properties of "transitionality" to
handle novice and advanced users at their own levels of sophistica-
tion. The transitional user interfaces will be built both at the

a

a

4

4

I

a

a
9

intelligent terminal level as well as the Clouds shell level.

2.5. Publ i ca t ions

referenced below.
The publications that have resulted from this research have been

9

0

e

a

3 . -
[A1 1~821

Allchin, J. E., and M. S. McKendry, Object-Based Synchroniza-
tion and Recovery, Technical Report GIT-ICs-82/15, School of
Infomation and Computer Science, Georgia Institute of Tech-
nology, September 1982

Allchin, J. E., A n Architecture for Reliable Decentralized
Systems, Ph.D. Thesis, School of Information and Computer Sci-
ence, Georgia Institute of Technology, 1983 (also released as
technical report GIT-ICs-83/23)

Allchin, J. E., and M. S. McKendry, Synchronization and
Recovery of Actions, Proceedings of the 2nd ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing (PODC) , Mont-
real, August 1983

[Allc83a]

[A1 lc8 3b)

[A1 1~851
Allchin J. E., Dasgupta P., LeBlanc R. J., McKendry M. S., Spaf-
ford E. , The Clouds Project: Designing and Implementing a Fault
Tolerant, Distributed Operating System. (draft)

Kenley, G. An Action Management System for a Distributed Operat-
ing System, Masters Thesis, School of ICs, Georgia Tech.

[Ken1851 8

[LeB185]
LeBlanc, R. J., and C. T. Wilkes, Systems Programming with
Objects and Actions, Proceedings of the Fifth International
Conference on Distributed Computing Systems, Denver, Colorado,
May 1985 (also available as Technical Report GIT-ICs-85/03)

McKendry M. S. and Allchin J. E. Object-Based Synchronization
and Recovery Technical Report GIT-ICS-82/15, Georgia Inst. of
Tech.

[McKe82]

[McKe8 31
McKendry, M. S . , J. E. Allchin, and W. C. Thibault, Architec-
ture for a Global Operating System, IEEE Infocom, April 1983

10
a

[McKe84a]
McKendry M. S. Clouds: A Fault-Tolerant Distributed Operating
System. Technical Report, Georgia Inst. of Tech.

McKendry, M. S., Ordering Actions for Visibility, Proceedings
of the Fourth Symposium on Reliability in Distributed Software
and Database Systems, Silver Spring, Maryland, October 1984
(also available as Technical Report GIT-ICs-84/05)

McKendry M.S., Fault Tolerant Scheduling Mechanisms, School of
ICs, Technical Report, Georgia Tech.

Pitts, D.V. and E. Spafford, Notes on a Storage Manager for
the Clouds Kernel, School of ICs, Technical Report, Georgia
Tech.

[McKe84b]

[McKe84c]

pitt85l

[Spaf84a]
Spafford E. Kernel Structures for a Reliable Multicomputer
Operating System Thesis Proposal, Georgia Institute of Tech.

Spafford, E. and M.S. McKendry, Kernel Structures for Clouds,
School of ICs, Technical Report, Georgia Tech.

[Spa f 84b]

a

Q

4

a

4

a

a

Notes on a Storage Manager
for the

Clouds Kernel*

N87-28326

Technical Report GIT-ICS-85/02

January 1985

Last Revision: October 20,1985

David V. Piits
Eugene H. Spaford

The Clouds Project, School of Information and Computer Science
Georgia Institute of Technology, Atlanta, Georgia 30332

* This research is funded in part by NASA grant NAG-1-430 and bye NSF grant DCR-8316590

..

CONTENTS

0

e

e

1 . Background .
2 . HardwareandEnvkoment . .
3 . TheDesignApprd . .

4.1 DeviceMedia
4.2 DeviceObjedStructures . .
4.3 DeviceObjedCalls
5.1 PartitionDataStructures . .
5.2 Calls on the Partition Object .

6 . TheSegmentObject
6.1 Segment Object Data stnrctures
6.2 Calls on the Segment Object .

7 . Reliable Storage Management . .
7.1 Segment levelrecovery . . .
7.2 Partitionlevel recovery . . .
7.3 Device support for recovery .
7.4 !kmmary

8 . Conclusions

4 . DeviceObpctS .

5 . ThePartitionObject

REFERENCES . .

.

.

.

.

.

.

.

.

.

. i -
n R A F T

. 2

. 4

. 6

. 8 8 8 10

. 12 13 16

. 18 18 18

. 21 22 26 28 29

. 30

. 31

LIST OF FIGURES

Figure 1 . Architecture of the Clouds kernel 2
Figure 2 . Clouds hardware configuration 4

Figure 3 . The system device table and other device object structures
Figure 4 . The system partition table and other partition ob* structures
Figure 5 . Two implementations of a Bloom filter
Figure 6 . Clouds kernel segment structure
Figure 7 . Actions block on competing Cornrnits 21
Figure8 . Precommittedsegment 23
Figure9 . Acommittedsegment 24

. 9

13
15

19

.

Figure 10 . An aborted segment 25

a

m

0

a

Notes on a Storage Manager
for the

Clouds Kernel"

Technical Report GIT-ICS-85/02

January 1985

Last Revision: October 20,1985

David V. Pitts
Eugene H. Spafford

The Clouds Project, School of Information and Computer Science
Georgia Institute of Technology, Atlanta, Georgia 30332

Abstract: The Clouds project is research directed towards producing a reliable distributed
computing system. The initial goal of the pro* is to produce a kernel which provides a reliable
environment with which a distributed operating system can be built. The Clouds kernel consists
of a set of replicated sub-kernels, each of which runs on a machine in the Clouds system. Each
sub-kernel is responsible for the management of resources on its machine; the sub-kernel
components annmunicate to provide the cooperation necessary to meld the various machines
into one kernel.

This report documents a portion of that research, namely, the implementation of a kernel-level
storage manager that supports reliability. The storage manager is a part of each sub-kernel and
maintains the secondary storage residing at each machine in our distributed system. In addition
to providing the usual data transfer services, the storage manager ensures that data being stored
survives machine and system crashes, and that the secondary storage of a failed machine is
recovered (made consistent) automatically when the machine is restarted. Since the storage
manager is a part of the Clouds kernel, efficiency of operation is also a concern. We wish to
reduce the overhead required to ensure the recoverability of secondary storage as much as
possible, while adhering to the design goals associated with the storage manager.

?his research is funded in part by NASA grant NAG-1-430 and bye NSF grant DCR-8316590

Technical Report GIT-ICS85/02 a

- 2 -

1. Background
In this section we present an overview of the Clouds kernel and discuss the philosophy behind
its development. The Clouds approach to providing reliability is through the use of actions and
objects, as discussed in PI, 121, f 3 1 , [41. The Clouds kernel provides higher level applications such
as operating systems with three primitives: processes, actwns, and objects. An objecf is a
typed collection of data which is manipulated by a set of operations. The data structures and the
set of operations for the object define its type. An mion is the unit of (fault tolerant) work in
the Clouds system. Adions guarantee f a k e atomicity of the operations performed by them:
the operation appears to either occur totally or not at all. Processes in Clouds are similar to
processes found in other systems, and represent a thread of execution and control. Actions and
objects are passive, waiting for a process to activate them. The model of computation for the
Clouds system is that of a set of processes making operation calls on objects to perform services
required by the system. In order to make these services reliable, the object operation calls are
performed under the auspices of an action.

-

Storage

Manager

I Action/

I Process

Manager L
Comm.

Manager

I I

I I
I 1
I 1
I 1
I I
I 1 *

I 1
I 1
I I
I 1

4
I I
I 1
I I
t i
I I
I I
I I
I 1
I 1
I I
I 1
I I

-

Comm.

Manager

-

Action/

Object

Manager Storage

Manager

Figure 1. Architecture of the Clouds kernel
Clouds adions provide a mechanism that allows the programmer to violate the conventional
notions of correctness ai4 consistency, as defied by strict serializability, when programming
reliable objects. The programmer can use any semantic knowledge about the intended
activation of an object to program a customized method for providing the recovery of the object.
This is done by the programmer writing new abort and m m i r operations for the object, which
indicate how the object data must be recovered. By allowing object recovery to be customized
in this way, we hope to provide increased concurrency in the execution of services compared to
using the usual recovery and synchronization rules (i.e., serializability), and so improve the
performance of the Clouds system.

Technical Report GIT-ICS85/02

a

a

a

I

a
- 3 -

e

i

0

0

0

The Clouds kernel has four major components: the objectlaction manager(s), the process
manager, the C0mmUniCations manager, and the storage manager. Figure 1 depicts the
architecture of the Clouds kernel for a system consisting of two nodes. The kernel is made up
of two subkernels, one of which resides on each node that is part of the Clouds system. Each
of the components of the kernel can CMnmUnicate with its corresponding components on other
nodes through the proper protocols.
The objed manager is responsible for providing the object operation invocation mechanism.
Each object is named by a unique capability comprised of a system name (d e d a sysname) and
a series of rights which indicate which object operations are available to the invoking process.
The object manager checks the capability provided by the operation call, locates the desired
object instance, formats and maps the operation parameters, and activates the objea. The
object manager is involved with handling action bookkeeping, as necessary. The object
manager also hides references to objects on other machines by providing a remote procedure
callmecharusn ' (RPC). The ob* manager makes an RPC look exactly like a local operation
call.
The process manager creates, destroys, and dispatches processes. It manages local processes, as
well as slave processes started to handle RPC's from other machines. The process manager is
not a global scheduler; it simply manages local resources.
The communicatons manager is responsible for the transmission of information among the
machines in the Clouds network. It maintains information about the c o ~ e ~ t i v i t y of the
network, the status of the variouS lines to which each machine is C O M ~ C ~ ~ C ~ , and queues of
outgoing and in-g data. m e data that goes through the communications manager is
uninterpreted - it might be an RPC or a part of a file that is being transmitted across the
network. More detailed descriptions of the object, process, and communications managers can
be found in Is] and la].
The fundion of the storage manager was described above. It coordinates with the object
manager to provide the corred commits and aborts of actions on object data residing on
secondary storage. In the remainder of this report, storage will refer to the secondary storage
(disk, tap, etc.) attached to a machine. Memory will refer to the main memory of the
machine.

e

Technical Report GIT-ICS85/02

a
- 4 -

2. Hardware and Environment
The Clouds kernel is currently under implementation on three VAX 1l/750’~.~ The machines
have eight megabytes of main memory altogether and are interconnected via a 10 Mb/sec
Ethernet. Also C O M ~ C ~ ~ to the Ethernet are a set of BM-PC’s, which will serve as intelligent
work stations. Future versions of the system may be connecled by multiple networks of varying
bandwidth.

Van I 1 750 C

Vax 111750 A

- Ethernet

Ethernet

- -
Secondary port

a

Rgure 2. Clouds hardware configuration a
Our prototype will have three types of storage devices available for the kernel. There may be a
tape drive on one machine that will be used to archive data and perform conventional system
backups. Each machine will have a RLO2 removable pack disk drive, in which each pack
provides 10 Mb of storage. We expect that RL02 media will be used as short term archive
devices and boot devices. Finally, each system will also have up to four RA81 disk drives.
Each such drive has a pennanently mounted pack providing 456 megabytes of storage
(unformatted). The RA81 drives are dual-ported; two controllers may be coupled to the drive
simultaneously. However, the drive is on-line to only one of the controllers at any time. The
switching of the device between controllers is done prnnady by a front panel switch, but
switching can be done under program control. The disks are controlled by UDASO controllers

a

(I
1. VAX is a trademark of the Digital Equipment Corporation

Technical Report GIT-ICS8302

~~ ~~~

4

a

a

e

a

which use DEC's Mass Storage Control Protocol (MSCP). These devices are expected to
provide the primary object storage for the Clouds system. Figure 2 shows the Clouds prototype
system.

Technical Report GIT-ICS.85/02

- 6 -
a

3. The Design Approach
The Clouds kernel provides user-defined objects2 as the building blocks (along with atomic
actions) of a reliable distributed system. The arguments for using an object-oriented a

and we will not repeat those rationales here. We feel that the kernel, in addition to supporting
objects for higher levels of software, should also reflect the use of an object-oriented
methodology in its design and implementation. To this end we have identified basic
components of the kernel and isolated them as modules that are accessible only through a set of
procedures defined for each module. These ob- are then used to fonn the major systems of
the kernel: the object manager, the process manager, the Ccnnmunications manager, and the
storage manager.
We attempt to present kernel objects as typical Clouds objects that provide (restricted) access to
functions and services provided by the kernel. However, there are differences between the
objects that form the kernel and those that are supported by the kernel. The fitst such
difference is in the implementation. User-defined objects will be created by users with an
objxt-oriented language, such as Aeolus fg1. This language enforces the use of an object-
oriented methodology. Our kernel objeds are currently implemented as C modules and most
of the responsibility for adhering to the philosophy of object-oriented design is the responsibility
of the programmer, not the programming language. Still, we believe the careful use of this
objed methodology despite the lack of support in the language provides benefits in the

. implementation and later maintenance of the kernel. It also may make the later conversion of
the kernel to some other object-oriented language, such as Aeolus, more convenient.
The other difference reflects our concern for the efficiency of kernel functions and the operation
invocation mechanrsn ' for objects. Many of the functions of the kernel are time-critical, or
because of their frequent use require very efficient implementations. The operation invocation
mecharusn * has overhead that we suspect cannot be afforded in these situations. Therefore,
operation calls on kernel objects are handled differently than operation calls on user-defined
objects. Calls on kemel operations may be performed as ordinary procedure calls or even as
simple transfers to blocks of d e . However, the appearance outside the kernel and the overall
philosophy is that of an object-oriented kernel.
Some kernel objects are not generally available outside the kernel. For example, this is the case
with the ob- comprising the storage manager. Operating system code may occasionally
require direct access to secondary storage, but it is hoped that for the most part the abstractions
provided by objects will suffice.
The storage manager is based on three sets of objeas: device objects, partition objects, and
segment objects. Each of these objects manages the same actual item (secondary storage), but
provides different abstractions. The device objects provide conventional device-level access to
secondary storage. Partition objects allow devices to be sectioned logically according to the
intended use of the storage on a device. Segment objects are the secondary storage extensions
of the segment type provided by the kernel. Recoverable permanent objects are implemented at
the level of segment objects.
The remainder of this report outlines a design for a storage manager for the Clouds kernel. It
covers the important aspeas of the structure and function of the storage manager, and discusses
how the storage manager is used by and uses other parts of the kernel. The next three sections
deal with the design and implementation of the device object, the partition object and the
segment ob*. Those sections specify the data structures required plus the interface to the

in general, and as used in the Clouds project in particular, are presented elsewhere r7YZt

2. Also referred to as ciient obkas.

Technical Report GXT-ICS85/02

a

a

4

a

a

a

a

(I

4

-7-

ob-. W o n 7 then covers how these objects are used by the kernel. In that m i o n we
discuss m e of the issues related to the reliability of the storage manager and its relationship to
the rest of the kernel. Section 8 contains a summary of this report, and a few conclusions and
reflections on the storage manager.

a

*

e

Technical Report GIT-ICS85/02

~ ~~ ~~

- 8 -
a

4. Device Objects
As with conventional systems, the storage manager for the Clouds kernel provides a device
level interface to secondary storage. This level of interaction with secondary storage is almost
exclusively the province of the Clouds kernel. In fact, even within the kernel, most accesses to
secondary storage are performed at some other (higher) level; only the storage manager makes
frequent use of device objects.
4.1 Device Media
The storage manager views devices as two parts: the device itself and the medium currently
being used by the device. This viewpoint is moot for fixed media disks, but for other forms of
secondary storage, such as tape and removable disk storage, it provides additional flexibility in
the configuration of a system. This separation is complete; a sysname exists not only for each
device in use on a system, but also for each medium. However, in many cases the distinction
between accessing specific media and accessing devices is not important, so we wish to hide this
separation. Therefore, the storage manager provides a mechanism for binding a medium to a
device.
Bindings between media and devices are generally performed at the initialization of the system
and involve the asscciation of device and medium. Binding a medium to a device may also
involve the foxmatting of the medium. In this latter case, a new sysname is generated for the
medium. This formatting or initialization of a medium will destroy any previous information
that existed on the medium. The old sysname will no longer give access to any medium. The
formatting of a blank or obsolete medium includes initialking the tables and structures that the
storage manager requires. These structures are discussed in Seaion 2.1.

a

a

4

I

4 In other cases, an existing medium is bound to a device. An existing medium is one which has a
sysname and is formatted. The binding will involve the reading of the sysname from the
medium and comparing it with the sysname passed to the storage manager. The binding will
take place only if a match occurs. We are not attempting to address security issues with this
design. Our interest is to provide flexibility, while maintaining some control over what is
accessible. The use of sysnames to access media provides this control.

medium. The usual sort of device calls then need only refer to the device. This devicemedium
binding stays in effect until it is explicitly broken by the storage manager.
In addition to setting up this correspondence between device and medium, this binding also
initializes an instance of a storage object in memory. In particular, critical tables and other
structures required by the device are brought into system memory. We will now look at the
data requirements of device objects.
4.2 Device Object Structures
The storage on a medium is presented as a sequence of 512-byte blocks that are addressed by
offsets from some fiied block. The offset used to address a block is called a device block
number (DBN). As we shall see in section 5, this storage can be subdivided into partitions,
allowing the storage on a device to be apportioned for policy reasons. At the device level,
though, the storage manager deals only with a contiguous string of blocks; partition bumr'xies
are not visible.
The device objed is responsible for the transfer of data between secondary storage and
memory. The device requires two tables in order to function. The first such structure is the
media header. This table contains basic information about the medium and the device using it.
This information includes the medium and device sysnames, the amount of available storage on
the medium, and speafkations for the device to which the medium is bound.

Once a medium has been bound to a device, any reference to the device refers to the bound 4

4

(I

4

I Technical Report GIT-ICS85/02

~

0

0

0

*

e

a

The other major structure is the index table. The index table describes the partitions that exist
on this device. This will include information such as the location, extent, and type. The
partition table is 16 entries long. Partitions are discussed in section 5.
The medium header and index table must be resistant to failures - in particular, device failures
such as head crashes. If the index table is destroyed by a head crash, for instance, we lose
access to the partitions on that medium. We therefore provide copies of the tables, placing the
copies on different cylinders in order to minimize the risk from multi-sector failures. The
alternate copies wiU be located in known positions based on m e computable function. We do
not anticipate problems as far as maintaining the consistency of the slave and master versions of
the table is concerned, since the tables are infrequently modified and any such modifications are
generally done during the system initialization.
In addition, the device objects will maintain a structure in memory called a flush table. The use
of this table is discussed in seaion 7, but briefly, the flush table allows a device to associate an
adion sysnarne with a set of requests. This supports the unnmit operation performed on
recoverable objects. Some devices may require the device object to provide bad sector
recovery. Ob- written for these devices will have to maintain a bad sector table on disk.

system
device
table

device sysnarne
pointer I / I L I f

count fields
reads. writes

errors, nterrupts

I avai a e-ac ive 1 sty;f laq:

'I device resisters
pointer I

......... device

header

index

: codewindow Init routine

L 7 k % = = = q mount routine

unmount routine i
read routine I .

7

write routine -

interrupt routine-

...............

......

I I \

request queue

FIgure 3. The system device table and other device object structures
The device objest uses one other structure, the system device table. The system device table is
not a part of the device object proper, but is actually the mechanism for managing the various
instances of the device objects. This table lists all secondary storage devices that are active on
the local machine. The device table entries contain pointers to device and medium sysnames,
status variables for the device, device registers, and entry points into the operations for the

Technical Report GIT-ICS85/02

- 10-

device object. Figure 3 shows a device object pointed to by one entry from the system device
table.
4.3 Device Object Calls
The device object calls deal with the transfer of information to and from the device and with the
relationship of the device to its medium. This allows for devices switching the physical medium
used for storage in a uniform way. Device and media sysnames are generally needed by those
calls setting up a binding between the medium and the device. Calls which perfom i/o do not
require a sysname. The proper device object calls are found through the system device tables.
4.3.1 init(datname) ram medname
Init generates a sysname for the medium currently on the device H i e d by devname. This
sysname is written in the medium header. Also written into the medium header is the device
specific infoxmation that is required. An area for the medium index table is reserved. The
return value is the medium. This is a format call; any existing structure on the medium is
overwritten. No other formatting is done, however. Any partitions desired are created later by
other calls. Redundant copies of the medium header and index table are created for reliability.
After the medium has been formatted, init mounts the device. See the description of mount for
details.
4.3.2 mowtt(&vname, medname) returns integer
This call binds the device called devnarne to the medium called medname. The sysname
presented to the call is compared to that in the medium header. If the two match, the device
and medium are bound. The medium index table and the medium map table are read from the
disk. If the device requires it, a bad sector table is created from the device. The return value
specifies the status of the call (success, failure).
4.3.3 retwn@im-cap(devmme) returns medname
This call returns the sysname of the medium that is bound to the device named devname. The
return value is this sysname. If the device is unbound, a valid sysname might still be returned if
a formatted medium is present in the device. In this case, the call can be seen as an operation
to read a label.3 This allows us to use media for which all currently existing copies of the
sysname are deleted or unavailable.
4.3.4 mm(devname) returns imeger
Unmount breaks a devicdmedium binding. All partitions on the medium are de-activated. The
return value is the status of the call.

4.3.5 read(lbn, address) returns integer
This call transfers the contents of a record located at disk address lbn to the page in memory at
address. Read blocks the calling process on a semaphore until the request is complete and
returns an integer indicating sumss or failure of the request.
4.3.6 write(id, ibn, address, frclg) returns integer
This call transfers the contents of a page in memory at location address to the record located at
address lbn on the device in question. Id is an identification used to associate this request with
a set of requests being issued by an action. If id is an action sysname, then the device object
looks the action id up in a flush table and if it is not there, creates an entry for the action and
the request; if the adion id is in the table, the request is added to that entry. If id is zero, then
there is no action associated with this request. Flag is used to indicate whether this is a forced

3. This kind of operation might seem to present a security hole in the system, in that it allows the system to determine
the name of an &own medium and then mount it. However, note that this call can only be executed by kernel
code or by a user call with speaal kernel capabilities, and these are assumed to be trustworthy.

Technical Report GIT-ICS85/02

8

0

0

0

*

write. If flag is non-zero, the device interrupts the n o d scheduling of requests by placing LS
request at the head of the queue. The new request is perfonned immediately after the current
request is completed. A forced write blocks the calling process on a semaphore until the request
is complete. Non-forced writes do not normally block the caller.
4.3.7 jlmh(id) retums integer *
Flush uses the flush table maintained by the device object to ensure that all write operations
associated with the action identified by id are actually completed. The return value indicates the
status of the call. A positive r e m value (the number of requests completed) indicates a
mccessfd flush. A zero or negative return value indicates that the action’s sysname was not
found in the flush table or that some error ocwred while attempting to flush the specified
requests.
4.3.8 enter(pmname, size) rerwns lbn
Enter registers a partition on the device. This involves making an entry for the partition in the
index table for the device, placing the partition sysname, partname, and the partition size, size,
in the entry, and allocating storage on the medium for the partition. The starting logical block
number for the partition is placed in the index table and is returned as the value of the call. A
negative return value indicates that an exceptional condition occurred, such as not enough
storage for the partition on the device. Enter is called as part of creation of a partition.
4.3.9 remave(ptmme) r a m integer
This operation allows the caller to remove a partition from the device. Partname is the sysname
for the partition. The entry for the partition is removed from the index table on the device and
the storage for the partition is deallocated. The return value indicates m s s or an exceptional
condition, such as a non-existent partition. Remove is called as part of the removal of a
partition from the device.
4.3.10 p i ~ i o m (p t a m y) r e t m integer
Partitions places the partition entries in the device’s index table into the m a y parameter
partarray. The major use of partitions is expected to be at system initialization, where it
passes partition’s sysnames to the boot code so that the partitions may be activated. The return
value is either the number of partitions written into the partarmy (a non-negative value) or a
negative value hdicating an exceptional condition, such as a bad index table.

e Technical Report GIT-ICS85/02

- 12-

5. The Partition Object
The partition ob+ represents an intermediate level of abstraction of Secondary storage.
Partitions are consecutive blocks of secondary storage that reside completely on one device.
Each partition is a logical object in that it manages the allocation of its own storage and
maintains the structures used to do so. A Clouds partition does not enforce any logical
organization of the data which resides on the partition, at least not in the sense of a Unix4
partition. A Unix partition represents a separate file system and all the files on the partition
have a hierarchical relationship. The objects residing in a Clouds partition may bear no
relationship to each other. It is simply an administrative organization imposed by the partition
system indicating how storage in a particular partition is managed.
The two important types of partitions are recoverable and non-recoverable. When a partition is
made non-recoverable, it is a declaration that no recovery will be provided for object data
stored on that partition and that recoverable objects should not be placed in it. There is no
similar restriction for recoverable partitions; such partitions may contain a mix of recoverable
and non-recoverable objects. Other partition types include those used for paging surfaces and
those reserved for temporary items.
Partitions manage storage as device independent blocks of storage and these are the smallest
units of allocation that partitions support. The blocks are addressed by a partition block number
(pbn) which is an offset from the beginning of the partition. All partitions are a multiple of this
block size.5
The partition has as its initial block a header containing partition specifications. The header
repeats most of the information found in the medium index table entry for this partition, plus
information about the partition’s state. This structue is generally accessed only when the
partition is activated or some change is made to the partition; at other times the information is in
memory and is referenced there.
Another structure used by the partition ob+ is the system partition table. Like the system
device table, the SPT is not part of any one partition object instance, but is part of the
underlying mechanism. The table contains enmes for all partitions which reside on the local
machine. Each entry in the table associates a partition sysname with the data structures and
information for that partition. These strudures and information include the starting block
number for the partition, pointers to in-memory structures and buffers used by the partition
ob+, and a pointer to the device ob+ on which the partition resides. This last pointer is
actually a pointer into the system device table. Figure 4 shows the complete relationship
amongst these strucmes.
Another function of the partition object is to maintain the location of segments and make
available this information upon request. One of the features supported by the Clouds kernel is
the location independence of objects (and thus segments). We mean by this that an object may
reside on any partition on any node in the Clouds system and may be moved to any other
partition on any other node. This implies that each access to an object requires that a
(potentially) system-wide search be initiated. The sysnames given to objects give no (defite)
infonnation as to the location of the objects. As can be imagined, such searches can be time-
consuming. In particular, searches on the partitions at a node might require one or more disk
access each. We discuss one mc.ih& of lessening the impact of these searches shortly.

4. Unix is a trademark of AT&T Bell Laboratories
5. Tke preliminary implementation will undoubtedly make this size equal to the size of a main memory page frame.

Technical Report GIT-ICS85/02

- 13-
ORIGINAC PA-GET IS
OF POOR QUALITY

e

e

a

0

c

a

.................,............*.,........................
in-memory secondary storage

partition structures partition structures I

I partition : _ _ _ _ _ _ _ andlocks _ _ _ _ _ _ _ _ _ _ ~ directory
page map buffferr

in-memory
header I

system device I \ il-I table

5

..
/

......

I

I

I

I
... . I

partition
page map

...........

partition
header

part. sysname

base address E!
........... ..

Flgure 4. The. system partition table and other partition object structures
5.1 Partition Data Structures
Two of the major functions provided by a partition object are the location of objects and the
management of storage. To provide these fimctions the partition ob+ maintains two
structures: the partition directory and the partition page map. The partition directory is a large
hash table which is composed of page-sized buckets. In our current implementation the bucket
size is 512 bytes, allowing each bucket to hold sixteen entries, each entry consisting of
sysname-pbn pairs. The sysname is the id for a segment and the pbn is the offset of the
segment within the partition. The entries to the directory are hashed to the proper bucket on
the sysname and then to the proper entry in the bucket by a secondary hash function, also on the
sysname.
The page map is simply a bit map representing the marage allocation for the partition. This
structure, along with the directory, contain most of the information that composes the partition
state. As such, they are crucial to maintaining the reliability of the partition and the system as a
whole, and some care must be taken in the modification and access of the partition directory and
page map, as explained in section 7. Additionally, the storage manager must protect these
structures from device failures. The basis for this protection is redundancy of the information.
The partition directory and page map have duplicates at known locations in the partition. We
are not overly concerned with the extra storage required; we calculate that even with duplicate
structures we on keep the storage requirements for these two structures below one per cent of

* Technical Report GIT-ICS85/02

- 14- (I

the total storage. Combined with the protocols we follow for maintaining the reliability of
segments and partitions, we should be able to minimiZe the access overhead caused by this
redundancy.
The partition directory and page map may be too large to completely reside in memory and, in
fact, we wil l not have them mapped entirely into virtual memory. Instead, we will maintain
buffer areas for the two structures, bringing in new pages from secondary storage as needed,
and using a least-recently-used discipline for replacement. We suspect that locality for the page
map will be fairly good so that allocations of storage can be done from the memory buffers.
However, we suspect that accesses to the partition directory will typically take one access to
secondary storage. If out hashing functions are chosen properly we may be able to handle
directory requests in (at most) one secondary storage access.
The partition object maintains another structure which it uses to avoid unnecessary secondary
storage accesses altogether (or at least make such accesses rare). The structure in question is a
Bloom filter 110] which we have called the Maybe Table. The Maybe Table is a probabilistic
membership checker. It will indicate either that the object in question definitely does not reside
on the partition being checked, or indicate that it possibly does. Thus, the Maybe Table gives a
method of short4raiting secondary storage accesses in cases where it gives a negative
response. However, a positive response may still lead to unnecessary accesses to secondary
storage. The key to success is to reduce the ratio of non-resident positive responses to all
positive responses to as small a value as possible.6
As described in [lo], a probabilistic membership checker is a hash table where collisions are
allowed. There are two techniques described in that paper that present methods that could be
used with Clouds ob+ sysnames. In the first technique, the Maybe Table consists of a table of
transformed entries. The transformation is a hashing function which takes a 48 bit sysname and
produces a shorter Maybe Table entry. Several sysnames may hash to the same entry value.
This entry value is then placed in the Maybe Table by the use of another hashing function; this
time collisions are handled in a conventional manner. To query the Maybe Table, the sysname
is once more transformed with the first hashing function, and the proper entry located using the
second. If the retrieved entry matches the transformed sysname, a positive response is
returned. Otherwise, the collision handling mechanism is invoked and another entry is tested.
If a positive response has not been returned upon termination of this procedure, a negative
response is returned.
A second scheme is to treat the Maybe Table as a bit-string and use t different hashing
functions, each of which returns an index into the bit-string. Placing a new entry in the Maybe
Table requires setting the bit whose index is returned by each hashing function. The test for
membership requires that all bits whose indices are returned by the hashing functions be set;
any clear bit causes the return of a negative response. Figure 5 illustrates the use of these two
techniques. In the example, the Maybe Tables are 18 bits in length. In each case, sysnames are
represented by three bits in the Maybe Tables. In the first case, sysnames are represented
Straight-forwardly by three bit entries; in the second case, three bits are set for every sysname
belonging to the table.
The benefit drawn from the use of a Bloom filter such as the Maybe Table is that it is a more
COITITP representation of the universe in which membership is being tested. In the case of the
Clouds kernel, this is the sysname population of a partition. This allows more of the table to be
kept in virtual memory (perhaps all of it), and so queries on the Maybe Table can generally be

6. This is an area that is open to further research. We believe that the goal is achievable by careful selection of the
(possibly more than one) filters used, and their manner of implementation. We hope to do some measuremens and
research on this once the system is working.

Technical Report GIT-ICS85/02

Maybe table as a series
of 3 bit elements

e

a

e

0

*

e

hashed into 48 bit first hashing 3 bit
sysname produces entry Maybe table

48 bit
sysname

3 hashing functions
produces an index

vector .

1-1 lo1 10....0111 I 1 17

Maybe table as a
bit string

n

set the bits at
these locations

I'

Figure 5. Two implementations of a Bloom filter
answered without going to secondary storage. If the response is negative, an unnecessary access
to secondary storage is avoided, speeding the search for the proper segment. If the response
from the query is positive, then an access to secondary storage is required, to either locate the
segment or to ascertain that it is really not on this partition.
Maintaining the Maybe Table has several costs that must be considered. One, of course, is the
initial creation cost. The storage manager will perform this initialization at system start-up for
each partition and thus the time spent can be ignored. Another cost arises from the dynamic
nature of the Clouds system. Ob+ are created on a partition, deleted from the partition, and
moved to other partitions. 'Clearly, these changes must be reflected in the Maybe Table else the
performance will be degraded. Creation of objects and the movement of objects onto a
partition pose no problem: the sysname can simply be incorporated into the table via the
methods described above. However, deletions of objects and movement of objects from a
partition are more troublesome. An entry or set of bits in the Maybe Table cannot be cleared to
remove a sysname's presence from the Maybe Table because several sysnames may be
represented by the same entry or set of bits.

Technical Report G?T-ICS85/02

I
- 16-

The simplest solution is to simply reconstruct the Maybe Table at intervals during the lifetime of

question of when the Maybe Table should be rebuilt is not yet answered. It would seem best to
base the interval between reconstructions on activity of the partition, particularly the rate of
deletions. This could be be done indirectly by recording the performance of the Maybe Table
and reconstructing the table when the performance falls below a given threshold. Or the
monitoring could be more direct, measuring the number of deletions and movements of objects

method for example, seems to be desirable since it measures the attribute that we want to
optimize (avoiding disk accesses). However, a burst of queries for a sysname not resident on
this partition but which happens to hash to the same entry or set of bits could cause a severe
drop in performance even though the table as a whole is behaving reasonably well.
We are currently incorporating a Maybe Table into the partition object as described in t1O]. We
wish to get the maximum performance from the Maybe Table with the impact on
virtual memory. Therefore, we may consider other implementations for the Maybe Table,
depending on the performance obtained. It may be, for example, that we are able to take
advantage of the nature of the sysname population to improve the performance of the table.
5.2 Calls on the Partition Object

of the calls require at least one sysname as an input parameter, usually a sysname for the
partition (the exception being createqartition; see below). Occasionally, sysnames for
segments and devices m y also be required.
5.2.1 P-create(devname, size, partatt) retwns partname

partition in bytes (this parameter is rounded by the call to the record size of the device) and
devname is the sysname of the device on which the partition is to reside. A sysname for the
new partition is generated and returned as the value of the call. The record location of the
initial record of the new partition is stored, along with the size (in device records) and the
partition sysname, in the media index table. The attributes of the partition, W i e d in the

enter call on the device object to perform its task. In particular, P-create must be able to
request allocation of storage from the device.
5.2.2 P_destmy(devname, partname) retwns irkeger
This call takes the two sysnames given as input parameters and frees the chunk of storage used
by the named partition. partname specifies the particular partition to be destroyed and devname
specifies the device on which it resides. The integer return value indicates the status of the
partition after the call (destroyed or not found on this device). The call removes the partition's
entry in the media index table and releases the storage used by the partition. The device
manipulations are performed with the device object call remove. Pdestroy also makes calls on
the device ob+ to perform its task.

the system. 'Ihis reconstruction may be done asynchronously as a background task. The 4

from the partition. Both of these methods have advantages and disadvantages. The indirect (I

The storage management system uses the following calls to manipulate the partition data. Most (I

P-create reserves a sequence of records on a device to form the partition. Size is the size of the 4

input parameter partatt are also stored in this new partition entry. P-create makes use of the 4

4

5.2.3 P-ertterfprtme, segname, pbn) retwns integer
P-enter places an entry in the partition directory for a segment. Segname and partname
identify the segment and partition, respectively. The entry in the directory includes the segment
sysname and the partition block number, pbn The call also modifies the Maybe Table. The
return value indicates success or an exceptional condition.
5.2.4 Pjemme(partname, segname) returns integer
This call removes the entry for a segment from the partition directory. Segname and partname
identrfy the segment and partition, respectively.

4

a

Technical Report GIT-ICs8302

~ ~

4

." - 1 1 -

0

a

0

e

8

0

e

5.2.5 P je turn(pmme, segname, segir$o) r e t m integer
Pjeturn returns the segment header indicated by segname which resides on the partition
specified by the input parameter partname. The header includes the sysname for the segment,
the size of the segment (in partition records), the record address of the segment header, and
whether the segment is recoverable. The segment header is placed in the parameter seginfo,
which is a pointer to a block of storage reserved for the information. If the segment is present,
the return value of the call is positive; otherwise the return value is negative. The call fiids the
information by searching the partition sysname map and examining the segment header found.
The Maybe Table is first queried in an attempt to avoid unnecessary secondary storage accesses.
5.2.6 Pdet -@st ,ne;r t) (pr tm, nwnber, segarray) r e t m integer
These two calls are similar to Pjeturn, in that they r e m the attributes of a segment found on
the partition specified by the input parameter partname. The segment is unspecified, however.
P-getfirst places the first number of segment sysnames appearing in the partition directory in
the parameter segarray. P-getjext can then be used to retrieve the attributes of the number
subsequent segments. The two calls share a static variable which holds the index of the next
segment about which information will be returned by Psetjext. The variable is reset to zero
after the last entry in the partition directory is accessed and is initially set to zero. which is an
array large enough to hold the requested number of sysnames. The return value is either zero,
indicating no sysnaxnes could be found, or the number of sysnames actually returned by the call.
5.2.7 P_pvailoblespace(ptme) returns integer
This call simply returns the number of free records on the partition indicated by partname. A
negative value may be returned m exception conditions. The call does a bit count on the volatile
record map. Because the volatile free map contains allocations and deallocations for
m d t t e d adions and because no synchronization is done on the record map, the value
returned should be considered only an approximation of the "true" number of free records.
5.2.8 P_(read.write)(partnome, part-@et, d r e s s) r e t m integer
P m d causes the transfer of the contents of a partition record, part-sset from the partition
-led by partname to the physical page in memory indicated by address. P-write reverses
the procedure, transferring the contents from the physical memory page to the partition record.
The calls use their return values to signal exceptional conditions. The virtual memory system
uses this call to handle page faults.
5.2.9 P_getbI.k(ptruzme) r e t m pbn
P s t b i k simply rerums the partition block number of a free page on the partition. The volatile
page map is updated to refled the allocation. A negative value is returned if there is no
partition storage remaining.
5.2. IO Pjetumblk(pmtmme) retwnr inreger
This call deallocates the page at the partition block number passed through pbn. The volatile
page map is updated. A negative value indicates a bad partition block number.
5.2.11 Pjestore(ptrunne, pbn) r e t m integer
The PJestore operation is called on system startup to examine the partition. If necessary, the
operation will perform any repairs to the partition structures required to bring it back into a
consistent state. The call will also cleanup any unfinished action processing. This sort of repair
k done on a partition-by-partition basis, since not all partitions have the same attributes and
therefore will not require the Same processing. In particular, cleanup of action processing is not
necessary on partitions not supporting recovery and partitions being used as paging surfaces.
Pjestore must detennine attributes of the partition by examining the partition header and then
proceed accordingly. The details of P-restore's operation are described in section 7, which is
concerned with the reliability of the storage manager. Pjestore also initializes structures used
by the partition object, such as the Maybe Table.

0 Technical Report GIT-ICS-85/02

- 18-

6. The Segment Object
The segment object provides the final level of abstraction for secondary storage. With these
objects, we are operating on blocks of storage allocated by the partitions. The abstraction
provided by the segment object is that of a sequence of bytes (kernel segment type). The
implementation is actually a tree of fixed length blocks of storage, as we shall see.
Segment objects provide a standard abstraction for the kernel to manipulate and process all
Clouds objects. The object implementation provides mechanisms for mapping segment data in
and out of virtual memory, creating and destroying segments, and modifying segments. The
necessary algorithms for maintaining the reliability of the segment data exist at this level.
The segment object is unconcerned with the internal organization of the objects it is managing.
The storage management system treats segments as uninterpreted bytes. Any interpretation is
performed by other parts of the kernel, such as the object manager.
6.1 Segment Object Data Structures
Recall that a partition directory has a set of entries which contains the pbn for the segments
residing on the partition. The partition block addressed by one of these entries contains a
segment header that identifies the segment. The complete header is 512 bytes long and contains
the segment (object) sysname, the object type sysname, a segment status field, a segment
shadow pointer (the status field and pointer are used for recovery), and the size of the segment
in bytes. The remainder of the header contains an array of pointers which lead to the segment
data. These pointers address one of two sorts of blocks: index blocks, which are arrays of
pointers to other blocks, and data blocks, which adually contain segment data. If, however, the
storage required for segment data is less than that used for the array of pointers in the segment
header, the segment data can be placed in the segment header itself. This would provide for the
efficient processing of very small segments. Figure 6 shows the segment structure.
A segment is a tree whose depth depends on the amount of data in the segment. Hence, the
smallest segment may have a depth of two (the header and the data blocks addressed by the
header), but trees of arbitrary depth are supported. This also means that occasionally the
segment will be restructured when its size is increased.
The interaction of the segment system and virtual memory is s t i l l being designed. It should be
pointed out that much of the manipulations performed by the segment object will involve the
segment’s representation in virtual memory and the structures maintained by virtual memory
itself. The segment system also makes some assumptions. One of these is that the location of
the segment is known. That is, the action or process using the segment knows the partition on
which the segment resides. Particularly, most segment calls do not require a partition sysname
as a parameter.
6.2 Calls on the Segment Object
The following calls all require the sysname for the segment being manipulated. Any offsets are
data record offsets, using the logical view of the segment.
6.2.1 S-creattfpartname, segname, am) returns integer
S-create allocates storage for a segment and sets up the segment header and index records.
The input parameters are the two sysnames for the partition and segment to be created,’ and a
structure holding information about the segment (its size, object type, recoverability). The
storage for the segment can be allocated and structured on the basis of the size field of attr.

7. Note that this call does not return a new sysname for the segment. If that were the case, it would not be possible to
move existing segmena into a partition and sti l l reference them by their old names.

Technical Report GIT-ICS85/02 4

~ _ _ ~ ~~

ORIGINAI; PAGE IS
OI; POOR QUALITY

partition
directory

entry

segment
header

+ b e e 0 - fl 1 (
sysname Fi/

status

unused
index
block

pointers

.-
byte 511 1-1

a

0

a

* index0

index 127

index
block /

data block

block
pointers

data block 7

data
blocks

512
bytes of

r object
data

F'igure 6. Clouds kernel segment strucrure
Data records are written in subsequent requests. The return value indicates the call status.

6.2.2 S,fieStrvy(ptmme, segname) retwns integer
This call deallocates storage for a segment. The sysname for the segment, segname, is removed
from the partition directory.
6.2.3 Slead(segname, Mer, size, d r) retwns integer
The Sjead call causes the transfer of size number of pages from storage to memory. Segname
identifies both the memory and storage versions of the segment. The source of the pages is at
location &set of the segment named by segname. Ad& is the virtual memory address of the
transfer destination. The return value indicates the status of the call.

6.2.4 S,write(segnume, @er, size, &r) retwns integer
S-write transfers data from memory to storage. Ad& is the source of the transfer, in this case a
virtual memory address. Segname is the sysname for the object (segment) whose data is to be
transferred. Note that this identifies both the memory pages (source) and the secondary storage
pages (destination) that must be transfered. Si number of pages, beginning at offset &set of
the segment, are copied from virtual memory to the storage segment. The return value
indicates the status of the call.

Technical Report GIT-ICS8302

-20-

6.2.5 S_precmit(aid, touchlist) r e t m integer

Touchlist is a list of the objects which have been modified by the action. Aid is the sysname of
the aaion making the precommit call. The call return value indicates the success or failure of
the call.
6.2.6 S-e&segname, Jag) r e t m integer
This operation performs the segment level commit or abort protocol as described in section 5,
depending on the value of flag. The return value indicates the success or failure of the
operation.
6.2.7 S-chgsize(segname, delta) r e t m integer
The call allocates or deallocates storage from the end of a segment. Delta is the number of
records to allocate or deallocate (positive or negative value, respectively). The return value is
the status of the call.

6.2.8 Ssatw(segna?ne) r e t m integer
This call determines the state of a secondary storage segment by examining the status field of
the segment header. The return value is this status (permanent, shadowed, precommitted) .

Sjrecomrnit performs the segment level presommit protocol as described in section 5 . a

a

a

a

a

a

Technical Report GIT-ICS85/02 4

7. Reliable Storage Management
In this section we look at the techniques used to ensure the reliability of the storage manager in
the presence of machine failures and action aborts. All the techniques described below require
the information and features provided by the use of atomic actions. This information includes
the knowledge of when it is correct to make the effects of an operation permanent and what
data has been modified. The storage manager provides a set of protocols that use this
information to make the correct updates to secondary storage so as to leave the storage system
in a consistent state. In order to understand these techniques and the motivation behind them,
we need to understand how the Clouds kernel manages actions.

e

e

a

e

c

8

e

BOA Precommit commit EOA

BOA
Precommit

blocked Precommit commit E OA

BOA ?recommit 11- :$% .+ reddy butblockedby tu precommit tl

Figure 7. Actions block on competing commits

The Clouds system considers actions to be units of work. Many actions may be active in the
same object, with each action updating object data. The only restriction enforced by the kernel8
on the synchronization of actions which are operating concurrently on a single object is at action
premmmit. An action that precommitS in an object blocks all other actions from precommitting
in that object until the precommitting action is committed. Other actions still update and process
the object’s data; the only restriction is on the precommit procedure. Although this restriction
may seem to aeate potential bottlenecks, the simplifications it provides in the processing of
commits will keep the blocking intervals short enough so as to cause no problems. In particular,
this restriction means that the storage manager must provide reliable updates for only one action
per object per time period.
There are two levels at which the storage manager must supply this sort of reliability: at the
partition level, and at the segment level. The partition has critical data which must be updated
correctly to allow the storage manager to function correctly. As stated previously, this data
includes the partition directory and the partition page map. At the segment level the storage
manager is responsible for the consistent update of object data and the underlying structures %t
represent this data. We use two rather distinct approaches to providing the recovery for ixse
two levels. In both cases the techniques provide pessimistic recovery; no changes are actually
made to the “live” data until the responsible action commits.

8. Ihe programmer may define other forms of synchronization within the implementation of the object based upon
semantic knowledge and other design factors. ’The kernel does not preclude such choices.

Technical Report GIT-ICS85/02 a

-22-

7.1 Segment level recovery
Segment recovery is accomplished via a shadowing scheme[ll]. That is, segments on which
actions are operating will have shadow versions which the actions will actually see. We note
that one of the gods of the recovery scheme is, aside from producing consistent results, to allow
recovery of segments (and partition structures) with as little storage overhead as possible, and
with as few storage accesses as possible. Shadowing, then, will be minimal, with only those
parts of the segment actually modified being shadowed.
The shadowing scheme consists of a set of protocols that indicate what the storage manager
must do for specified segment states and action events. We consider these states and events in
the following paragraphs and develop the protocols h i t shadow segments. When an action is
started, the storage manager is involved initially in the transfer of the data for the object being
operated upon from storage to memory. Until precommit occurs, the only transfer of
information is from device to system. All modifications to the action data are handled in
memory by the action manager. On the action commit the storage manager starts transferring
information back to storage. These transfers are the result of the action management system
protocols for transfering action updates to the permanent state of the object.
7.1 .I The p r e c m i t prctmd
The precOmmit protocol ensures that updated pages of ob+ data that an action has modified
are recorded on non-volatile storage to prepare for the fiial commit of the action. The storage
manager performs the shadowing and data transfers as follows:
P1

P2

P3

The storage manager determines how many pages are to be shadowed and allocates
storage for shadow versions through calls to the virtual memory system and the partition
object, respectively. The storage manager allocates shadow storage not only for modified
data pages, but also for the segment header, plus any index pages that are required to
reach a modified data page.
The storage manager shadows the segment. The segment header is copied to the shadow
segment header. The modified data pages are copied from memory to the shadow data
pages. Modified versions of index pages are copied to shadow index pages. Some index
pages must be modified and shadowed so that the shadows point to the shadow versions
of data pages. The storage manager places a modified version of the segment header
into the shadow segment header. Modifications made to the segment header data could
include a change in the size, and changes to the array of pointers (some of these pointers
may point to shadow pages, as with the index pages).
The permanent segment header is modified so that the status flag indicates that the
segment is being shadowed. A pointer is also set in the header which indicates the
location of the shadow segment header.

One point to note about the above protocol is that there are a number of reads assumed to get
the segment structure into memory. Also note that the number of pages that must be shadowed
and the identification of which index pages must be shadowed can be determined by knowing
the size of the segment and which data pages must be shadowed. The segment header is
modified last to reduce the work necessary to restore the segment in the event the system
aashes before the precommit is complete4 '
Once the precommit completes, we are left with two versions of the segment. The two versions
overlap in spots as illustrated in Figure 8, where blocks within the dashed box are part of the

9. A crash at any point before this final write will recover with the shadow pages still listed in the free spa= list and
completely unrefered, and thus they get scavenged automatically.

Technical Report GlT-ICS85/02 4

I
I
I I

Rgure 8. Prmmmitted segment
permanent version, while blocks inside the dotted box are part of the segment shadow. Read
operations on unshadowed pages refer to permanent pages. The shadow version is visible only
to the action which is performing the commit.
We must point out that the storage manager’s prmmmit protocol is not the same as the action
manager’s precommit. After the storage manager has completed the shadowing, the action
could still abort and the shadowed version would have to be removed. An example of such a
situation is when the action spans several nodes and uses a two-phase commit protocol. Phase
one is complete only when all nodes have completely shadc;,.cd any object data the action
touched on their storage. If one node cannot do this, the action aborts.
7. I .2 The cunmit prctad
Once the segment is shadowed and the action decides that it can continue the commit, the
storage manager performs its own commit protocol. The storage manager must switch the
shadow version for the old pennanent version of the segment. There is some bookkeeping for
the partition as well. The protocol is as follows:

Technical Report GIT-ICS85/02

- 24 -

Unshadowed
index
block

0

object
sysname

OWPGTNAI: PAGE IS
9 F POOR QUALITY

C1 Update the permanent page map on storage. This requires that all addresses for shadow

the segment header be deallocated in the page map.
records be allocated in the page map and all modified records of the segment including 0

C2 The partition directory is set so that it points to the new segment header for the segment.
C3 The shadow segment header is set so that it is now the permanent segment header, that

is, it is marked as “permanent.”

I
I
I
I Shadowed

index
I block

data block

data block

block
pointers

data block

Dea llocated
on commit

---- .

partition
directory

entry Shadow

Permanent
segment
header

sysname

sysname

size

shadow

Precnmrnlted

Index hlock

index block

I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :

New
permanent *

segm,ent :
version .

b, Shadowed
\ index block .;--

data block

-;
data block

block
shadow

1 ---- -- - _ - _ _ _ _ J ..

FIgure 9. A committed segment
Once this protcd 1s complete, any references to the segment will refer to the new version of
the segment. The new segment is a merging of old unmodified records and new records.
Figure 9 shows a committed segment. The blocks in the dashed box were parts of the
pennanent segment being shadowed during precommit. These blocks are deallocated as part of
the Commit during step C1. During this phase of the protocol, the storage manager updates the
permanent page map on secondary storage. Recall that Clouds uses pessimistic recovery and
any effects of an action, including storage allocation to perform the commit, cannot become
permanent until the action commits. Therefore, all allocations are performed on a volatile page
map. We discuss this and other ideas in the section on partition level recovery.

0

a

a

0

a

Technical Report GIT.-ICS85/02

7.1.3 The abort protocol
Actions can also abort for one reason or another and the storage manager requires a protocol
for this event as well. The protocol simply rids the segment of any trace of the action's work as
follows:

A1 The volatile page map is updated to remove allocations that the action has made to

A2 The status flag of the permanent segment header is set to show that the segment is
shadow the modified pages of the segment.

unshadowed and then the shadow pointer is set to null.

- Permanent Deallocated
onabort ... ~

Shadowed .
index
block

1 : * -

I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :
I :

..........
Shadow
segment
header

object
sysname

sysname

Permanent
segment
header

Unshadowed

unshadowed data block
sysname

0 I size I
shadow

Precommited block
pointers U n i h a d o d

index block
I index block 1 I unshadowed data block I

I I I

I f index Mock
I inder block I - 1 -

index Unshadowed =
block data

block
- -

data block -
data block ' I

I i
I = more

data -
block = Shadowed =

pointers - -
I =
I =
I ,
I

- - - data - block - - -
data block \ .

1 data block 1;

i block
pointers

data block

block
shadow E UnsF$wed 3

block

Unshadowed

block

L,,,,,,,,,,,,,,,,,,,,,,,,J L........................:
Flgure 10. An aborted segment

The storage manager uses this protocol only when an action has started to Commit and aborts in
the middle. If the action aborts before attempting to commit, the storage manager is not
involved at all. Figure 10 illustrates the results of the abort protocol. In this case, the blocks
inside the dotted line are deallocated upon the abort, as these blocks are only shadows for the
permanent segment.

0

Technical Report GIT-ICS85/02

- 26 - a

7.1.4 System failures
One final event must be considered. That is how does the system recover from a machine
crash? Speafically, we are concerned with restoring the segment and partition to a consistent
state after the system is brought up again. The system may have had a number of actions in
various states at the time of the crash and we want to insure the appearance of indivisibility of
actions. Under the Clouds policy, any action that has not precommitted when a crash occurs is
aborted when the system is restored. As we have already noted, actions which do not begin
precommit before the system crashes do not concern the storage manager; these actions have no
effect on system storage. For ob- which completed precommit processing, we must
determine whether their action's effects become permanent or are erased. This depends on the
state of the action. The crash recovery protocol, then, is as follows:
CRl A new volatile page map is created for the partition.
CR2The storage manager determines which actions touched segments on this partition and

determines the state of each such action. The storage manager polls a kernel database
and examines the segments on its local storage to identify these segments,

CR3If a segment was touched by an action that has completed phase one and should be
committed, the storage manager performs the commit protocol on the segment, as above.

CR4 If the action which modified this segment was aborted by the action manager, the
storage manager uses the abort protocol, as given above.

At the end of crash recovery, the partitions are in a consistent state; either the actions occurred
or they did not. The database referred to in step CR2 is a kernel level database shared by the
nodes in the system. The database exchanges information amongst the systems using a suite of
algorithms developed in [l]. The information in the database represents an approximate state of
the network. This database is copied from other nodes by the kernel when a node is added to
the Clouds system. Among the information kept in the database is a list of actions, their status,
and segments touched by the actions. Generally, the storage manager can find here the
infomation needed for crash recovery. In some cases, though, a local action (one which does
not leave the site on which it is born) may not appear in this list, even though its status at the
crash time was complete and'known. In cases such as these, the storage manager can find
shadowed segments only by an exhaustive examination of ihe partitions.
Another issue is that of a system failure during an action write, so that only part of the write is
actually completed. In the discussion thus far, we are assuming that we have atomic single
record writes. The atomicity we are concerned with is failure atomicity, whereby the write
either takes place or not. In practice, this means that we can detect an incomplete write (the
system failed during a record write) and we are not overwriting the only copy of the data in
question. If a device we are using does not support detection of incomplete writes, we can
simulate the effect using the standard method of stable storage as described by Lampson and
Sturgis in [121. In [I3] the question of when the atomic single record write assumption can be
relaxed, if at all, and under what circumstances, is investigated.
7.2 Partition level recovery
In the last section we outlined the techniques used to provide reliability for the segments on
storage. We now turn to the problem of maintaining the consistency of partition structures,
particularly the page map and the segment directory. These structures were discussed to a small
extent in the last Section because they are involved in shadowing segments. We did not discuss
how the structures themselves must be modified to maintain their consistency. Once again, let
us consider the action environment provided by the kernel. Recall that a Committing action
blocks all other actions from committing in a segment it has modified. The partitions are
ob*, so that any action Committing would block all other actions from Committing in any
object residing in that partition. For a one partition node, this permits only one action at a time
to commit. We feel that this is too restrictive.

Technical Report GIT-ICS85/02

a

a

II

(I

(I

a

a

a

4

I

a

0

e

0

a

a

0

We allow any number of actions in a partition to comrnit simultaneously, excluding any segment
conflicts. Given this, we do not feel that shadowing can be used to provide recoverability of the
page map and directories. Maintainjng the various shadow versions in itself would be
complicated, but in addition we would need to propagate committed data to as yet uncommitted
shadowed data. We therefore re+ our segment level shadowing scheme as an approach for
partition level recovery and we must develop another method for this task.
The partition directory does not have a volatile component. There are two copies of the
directory residing on the partition (for the redundancy necessary to protect against media
failures) and a committing action on a partition object must update both copies in a consistent
manner to indicate that the new object version is to be used. Once again, we assume atomic
single record writes, which wil l allow us to determine whether the copies are consistent, when
the writes are performed in a determined order. An examination of both permanent copies and
the header of the segment involved, if done in the proper order, will reveal any inconsistencies
and the manner in which they should be resolved.
The partition page map has a volatile component which the storage manager uses to make non-
committed storage allocations and which disappears after a system crash. Note that the volatile
page map provides correct storage allocation information excluding system failures. Now recall
that the Commit protocol for storage management entails three steps, the second of which
involves jnstalling the action’s storage allocations onto the permanent page map. We have two
approaches we feel will provide consistent updating of the permanent page map. The first
approach simply does away with the permanent page map of the partition, and maintains only
the volatile version. As noted earlier, this provides correct storage allocation until a system
failure OCCUTS and the page map is lost. Clearly, we must be able to recover the page map after
the system is restarted, and the obvious solution is an examination of the partition. Equally
clearly, this will require quite extensive processing upon system startups.
The second approach to maintaining the partition page maps involves the use of intention lists
and does require a permanent copy of the page map. With this approach, the storage manager
during step one of the segment commit protocol does not write directly to the permanent page
map, but instead writes an intention list of storage allocations (deallocations) to disk. Because
the volatile page map reflects the correct storage allocation for a partition, the actual updating of
the permanent page map from the intention list can be performed as background processing by
the storage manager. If the system crashes before some updates are performed, they can
always be done as part of the system startup processing. The steps required by this protocol are
shown below

1. The creation of the intention list begins at precommit. When the shadow is allocated, the
storage manager places these pages on the allocation intention list. The pages to be
replaced by the shadows are placed on a deallccation intention list.

2. When the signal is given to start the fiial commit, these lists are written to a list of
pending allocations maintained by the partition.

3. At some later time, these lists are merged into the page map as part of normal partition
bookkeeping.

The only testriction is that the updates from the intention list must be performed in the order in
which &c; Jocations and deallocations were committed.
Our initial implementation of the storage manager will use the fist mechanism. We have two
reasons for doing this. First, we are concerned more with the cost of commit processing than
we are with system startup processing simply because we feel that system failures will be
infrequent and because action processing is our model of computation. This approach both
simplies the implementation and makes the commit process more efficient, since no extra disk
writes are required to update a permanent page map.

Technical Report GlT-ICS85/02

- 28 - a

Secondly, an extensive examination generally will be made of the partitions at system startup to
clean up any unfiihed action commits or aborts. The reconstruction of the page map is
partially subsumed in this processing.
7.3 Device support for recovery
The above protocols have several implicit assumptions on which they rely to operate correctly,
two of which concern the device object. We have already mentioned the assumption that devices
can perform atomic single record writes. The other assumption concerns the transfer of data
from system to storage. The protocols assume that upon completion of a call to any of the
‘ k i t e ” operations the data intended for transfer to storage has, in fact, been transferred.
Under conventional systems, this is not necessarily the case, since requests for writes to storage
may be buffered. Data may or may not actually be transferred before the system mashes. If
the data were not actually transferred, there is no way to recover the segment or partition when
the system is restarted.
At the device level, then, the storage manager requires m e way in which to ensure the timely
completion of data transfers. We wish to accomplish this without adversely affecting the other
processing on the system. Also, the action causing the writes to storage must be informed of
the completion of the writes in order to continue its commit processing.
There is a great deal of latitude with the timing of when the action writes are forced to the
device. One discipline is to have a synchronous write operation that immediately forces the
device to schedule requests issued by the operation. By this we mean that any requests currently
being processed are completed and then n o d scheduling is pre-empted. Synchronous write
requests are then carried out in order of receipt. Thus, action writes are forced to the device
early in the sequence of action commit processing. The drawback is that requests for
synchronous writes appear in bursts at p r d t and commit. Any scheduling that the device
does for efficiency of the device’s operation is disrupted.
Another approach is to allow the device to schedule the requests subject to its own constraints
and simply inform the storage manager when the requests are completed. This allows the
devices to schedule requests efficiently, but on delay action Commit processing. However, the
storage manager does know when the completion of the precommit and commit protocols can be
safely signalled.
A compromise approach initially allows precommit and Commit to be enqueued as usual and
handled as normal requests. It is only when completion of the cormnit or precommit is
imminent that the write must be forced to storage. To accomplish this, requests must be
identifiable by the storage manager so that the manager can signal which requests must have
priority. The manager can simply place the action id of the Committing action in a field of the
request when requesting a write to storage.
When the storage manager determines it is necessary, it can make a call on the device object to
reorder its queue of requests, giving priority to this action’s requests. This technique may prove
useful if a sigmfkant amount of time can elapse before the storage manager must complete the
p r d t and commit procedures. In cases where the action has touched a number of objects
on several systems this may indeed be the case. In such situations, the devices can operate
efficiently (and possibly reduce the number of pending precommit and commit requests,
reducing the disruption when it becomes necessary to force them to storage), and the action is
not delayed, since it is not ready to complete its commit. To accomplish this as stated, the
storage manager must be able to identify when requests must be forced to storage. This will be
based on the results of any two phase commit that is performed and the storage manager will
rely on the action management system to signal when final commit is to be performed.
Each device object maintains a flush table (as discussed in section 4) to control the forcing of
action writes. When the list of requests for the action entry in the flush table is empty, the
storage manager can inform the action that the commit processing can continue.

Technical Report GIT.-ICS85/02

e

e

a

a

e

e

a

- 29 -

0
7.4 Summary
Support for reliability and recovery is integrated throughout the storage manager from the
lowest level to the highest. The segment system, via the use of segment objects, provides for
recovery of client object data recovery through the use of shadowing of modified data and the
discipline of the shadowing provided by the protocols discussed above. The data that the
storage manager uses to manage Clouds objects is made recoverable by the partition objects. At
this level, our primary concern is how to maintain the data across system failures, and we
present a few approaches for doing this. At the device level, support is provided to ensure that
data is written when necessary, allowing action processing to be performed correctly at a higher
level.

a

0

0

Technical Report GIT-ICS85/02 e

-

-30-

8. Conclusions

The motivation behind the Clouds project is the belief that systems in general and distributed I
systems in partidar should provide reliable data management and reliable computation. This
report documents part of our efforts towards that goal, namely the storage manager for the
Clouds kernel. The Clouds storage manager, in addition to providing the traditional services of
storage management, also provides support for the object-action methodology presented by the
Clouds kernel.
We have presented an overview of the storage manager for the Clouds kernel. The storage
manager is presented as a collection of objects, each of which provides an abstract view of the
secondary storage. At the lowest level, secondary starage is viewed through the device object,
and the physical storage medium is viewed as a sequence of pages (in the current
implementation, a page is 512 bytes) with very little structure, other than the device header and
index table.
of the raw storage provided by the device object. Once again storage is viewed as a sequence of
pages, but that storage has a more defied structure. Each partition maintains a directory and a
page map, so that each partition is responsible for managing its storage and for providing a
location service for the next level of abstraction, the segment object. The segment object
provides a view of storage that is a sequence of bytes and each segment object generally

tree-like structure of pages.
We have described the data struaures associated with each object and presented the operations
with which the data structures can be manipulated. We have also tried to convey the
relationships amongst the three objects and to show how they interact with each other and the
rest of the kernel.
The research that we are conducting is prxmardy involved with how the storage manager
provides the recoverability of the storage it manages and thus supports the reliability of the
Clouds kernel. To that end the storage manager uses a set of protocols to ensure that object
data is updated in a consistent manner and that even through system failures, enough
information survives to maintain the consistency of the object. We show how these protocols

4

One step higher in our hierarchy is the partition object, which manages a portion a

corresponds to m e other kernel or user object. The storage manager views segments as a a

4

are used to support the aaionlobject programming paradigm of the Clouds system. 4
Each level of storage object discussed provides some support for recoverability. The device
objeas maintain flush tables which allow the storage manager to ensure that action writes are
completed before a commit is finalized. The partition o b w maintains a consistent view of
allocated storage and insures the correct updating of the partition directory. The segment object
provides recovery of object data through the set of protocols described.

Technical Report GIT-ICS85/02

(I

REFERENCES

e

0

0

a

0

a

0

a

&

1. Allchin, Jim, An Architecture for Reliable Decentralized System, Ph.D. Thesis, Georgia
Institute of Technology, Atlanta, Georgia, 1983.

2. McKendry, Martin, Mering Actions for Visibility, Technical Report GIT-ICS84/05,
Georgia Institute of Technology, Atlanta, Georgia, 1984.

3. Allchin, Jim and Martin McKendry, Object-Baed Synchronization and Recovery, Technical
Report GIT-ICS8215, Georgia Institute of Technology, Atlanta, Georgia, 1982.

4.Allchin, Jim and Martin McKendry, “Synchronization and Recovery of Actions,”
Proceedings of the Second ACM SIGACT-SIWPS Sympsiwn on Principles of Distributed
Computing, Montreal, 1983.

5. Spafford, Eugene and Martin McKendry, Kernel Struaures for Clolddr, Technical Report
GIT-’ICS84/09, Georgia Institute of Technology, Atlanta, Georgia, 1984.

6. Spafford, Eugene, Kernel Structures for a Distributed Operating System, Ph.D. Thesis,
Georgia Institute of Technology, Atlanta, Georgia, in preparation.

7. Jones, A. K., ‘‘The Object Model: A Conceptual Tool for !3rucmm ’ g Software,” Operating
$~sfm: An Advanced Course, Springer-Verlag, New York, pp. 7-16, 1979.

8. Wilkes, C. Thomas, Preliminmy Aeolus Reference Manual, Technical Report GlT-ICS
8507, Georgia Institute of Technology, Atlanta, Georgia, 1985.

9. LeBlanc, Richard J. and C. Thnas Wilkes, “Systems Programming with Objects and
Actions,” Proceedings qf the F@h Intem‘onai Cogereme on Distributed Computing,
Denver, 1984.

10. Bloom, B. H., “Space/rie Trade-offs in Hash Coding with Allowable Errors,”
CoPnmwticationr ofthe ACM, No. 13, Vol. 7, pp. 422-426, July 1970.

11. Gray, J. N., ‘Notes on Data Base Operating Systems,” Operating Systems: An Advanced
Course, Ed. by R. Bayer, R. M. Graham, and G. Seegmuller, Springer-Verlag, Berlin,
393481,19?9.

12 .hpson , B. W. and H. E. sturgis, Crash Recovery in a Distributed Storage System,
unpublished paper, Computer Science Laboratory, Xerox Palo Alto Research Center, Palo
Alto, California, 1979.

13. Pitts, David V., Storage Management for a Reliable Decentralized Operating System, Ph.D.
Thesis, Georgia Institute of Technology, Atlanta, Georgia, in preparation.

Technical Report GIT-ICS85/02

0 I

' I

0

0

Kernel Structures for Clouds *

Technical Report
GIT-ICS-84/09

March 1984
Last Revision: May 14,1984

Eugene €1. Spafford

M:trtin S. McKcndry

.-

School of Information and Computer Science
Georgia Institute of Technology

Atl:intn, Georgia 30332

Kernel Structures For Clouds

0

a

e

0

In the past few years, i i great detil of i ~ s o i i r c h has hccn focused on the potential benefits ofdistributed
systems. In particular, ii distri1)utecI systcni offers t he potential of a fau l t - to le ran t computing
envi ronment . A t l istr ihutcd s y s t e m iilso suggests increased comput ing power t h r o u g h t h e
conibination and uppl iciit ion ol’ r(~soitiw~s. ‘I’hc prcsencc of multiple mnchines, however, raises many
questions relating to coiiitiiuiiic;itioii, consistcbncy, reliability, configuration, and user interfaces, to
name jus t a few. These ciitcstioiis are tliflicult to address, and that is perhaps the reason why so few
a t tempts have been tnade to coristruct actrial distributed systerns. Interesting recent work in this
a r ea includes the Bdvr~ pro.jcct a t thc University of Washington (e.g., IAlme83]), t he Argus project at
MJT (e.g., [i,isk831 and I\VeihS:ll), t h o A c w n l systein a t ChlU (IICash81 I), and the ISIS project a t
Cornell (I I3irmB-tl).

The Cfouds project is an ;ippiwiic,h to the construction and application of a distributed system tha t is
intended to iidtlrcss these questions. \Vc support the “rooni full of computers” view of distribution. In
this view, thc user s e w ;I siiiglc tw.oiitx*e, tlwpitc physical tlistinctions. In our research approach, this
is achieved hy construct iiig i i t i i~ t i l~~ t t . ; i n sp~ i rcn t multicomputer operating system with low-level
support for niai t i t~i i i i i i i~ consislvrit (I t i t i t itoiiis A ~nrrllic.onrprrler or conzprttw cluster is a system of
many coiiiputersjoincd into 0 1 1 0 I ; I I . ~ L , systctii. ’Hie systcin’s distribution is trarispur-errl to users and to
most operating systeni conipoii(:iits in thc sciisc that the user i s not aware of the na ture o r number of
machines which composc thc. t i i i t l t icoiiiputc:r ‘I’hc: iisior’s (lata ai i t l processes may be dis t r ibuted
throughout the t i i~r l t icom~~i i tc i~ hys tcn i . i)r they all m;iy he locatctl on one processor -- there is no
ohserv:il)lc diffcrcnco to t tic. us(*i~, t i o r is t ticvc a i l? need for the user to hc ilw;ire of thc configuration.
\Vc support this trtinsptir(~nc*y (litring rrpr‘wrd c .o~i / i ,~crr~i~iorI - - the atltlition of itio1.c niachincs, and
during (fowriimri/ ~ , , (, i) ~ i ~ i ~ i / r f ~ ~ i ~ ~ t i t h i > t . i . n i o v ; i l or f i i i l u w of inuchincs.

‘I’hc principles and i i i o t i va t io t i . : I)c,liirid t t i (5 (‘ lo r r t ls project have heen tlescril)ed in more tlcpth in
several clocitnieiits (1 \ I C ti(>S:J 1 , I \lcK(nY-I I, I1\llc83aI). The authors assume tha t the reader is already
acquainted with the (’ l o r i t l s pr.o,icd ; i t i d is winewhat fnmiliur with the goals out l ined in those
dociitiwnls. This pi tp (>r is i i i t c * r i t l (d to I N , t i t i inti.ocluclion to the intcrnal s t ructures of the Clouds
licirnel. W e will be cotistt.uctitix ; \ t i (~xp~rii i icntt i l Cloutfs systcm during the next few years using
tied icii t et1 ttt i n ico ni put e 1.5 .iritl pc. i’so t i ; i I co ~iipi i tcr .~; . Fur thcr tlcscr i pt io n of the Ciocids kernel will \>e
done i t s t h i s cspcrimeiitiil sys;l(ntii c.o~itiiiues to he tlcsignctl atid constructed (1SpafS-t I , ISpaf551,
I I ’i t t S.5 I 1.

2. Hasic Assumptions

a

- 1 -
e

Technical Report GIT-1cS-a4/09

form the kcrnel for the system. The operating system itself is implemented above the kernel, and
iipplications are programmed above the opet.ating system.

Figtire 2.1 illustrates th is logical hict-at-chy oflevcls.

a

(I

Applications 1
Applications Applications

L

-
Operating System

K e rn el

Sub-
kernel

I’ h y s i c a I
Computer

SU b- I kernel I
Ph y si ca 1

Computer C o m p u te r

Q

Oiir f i r s t prototype s y s t e m \vi11 consist ol’t hroc or four Vax 11/750 processors connected together by a
f i ~ i i l t tolerant 70\ll~/scc hiis, ‘I’hcse systems w i l l also be connected by a l0hll)/sec Ethernet, a n d
possil)ly through diiiil-ported disks. A Iitiiiil)cr of 11311 IT microcornputers w i l l also be connected to
thc I~:ttiet~nct atid w i l l servo ;is inttrllige~iit t c b r i i i i r i i i l s . k’igiire 2 .2 illustrates the connections.

2.3 Access rights, names, a n d capa1~ilititt.s

4

- 2 -

m

I
Ethernet CI

interface -
I

Vax 111750
2 Mb

a

e

a

0

Vax P3

10 Mb

1 2 1 Mb

Dirk

121 Mb

Dirk

Ethernet CI
interface -

I

Vax 111750
Vax P3 2 Mb

121 Mb

Dirk

1 2 1 Mb

Dirk

. Ethernet CI
Interface

Vax 111750
2 Mb

Vax R4

8 Arynth Liner

(on each system)
Computer Interconnect

(Ci) 70 Mb/sec

Ethernet 10 Mb/sec

I B M PC's, 3 2 0 Kb, Dual dlsk
Voice, mouse, track bail, etc.

. Ethernet CI
Interface

Vax 111750
2 Mb

Vax R4

1600 bpi

CI Ethernet
Interface

Vax 11/750
3 Mb

456

Mb Mb Mb
Dirk

VJX f 2

CI Ethernet
interface

Vax 111750

8 Arynth Liner

(on each system)
Computer Interconnect

(Ci) 70 Mb/sec

Ethernet 10 Mb/sec

I B M PC's, 3 2 0 Kb, Dual disk
Voice, mouse, track bail, etc.

- 3 -

Technical Re po r t GIT-ICS-84/0 9

Type NodeID Crash Count subsequence ID

sysname also contains a field which hclps tielermine the type of the i tem referenced by the sysname --
a system procedure, a user-defined object (referred to a s a client objec!), a process, and so on.

Objects a r e referenced via oti.ject capabilities. An object capability is a 64 bit value consisting of the
sysname of the object instance being rctferenced, and ;I 32 bit capability inask defining the access
r ights to the object, Kach hit s e t i n thc masli indicates a n operation tha t ciin be executed by the holder
of the capability (those operations l)eit\s present in the object). (Hefer to figure 2.3 .) Items being
referenced by the system have impii (d ;iccess rights for certain kernel operations. These implied
rights always allow the kernc~l t o involtc the operations, b u t the abil i ty to invoke those operations
cannot be passed to user p r o ~ s s e s

Example Capabi l i ty (64 bits)

1 0 0 1 1 1 0 1 0 0 0 1 0 0 0 0 1
Capability mask (32 bits)
1 = access right, 0 = none

Sysname (3 2 bits)

a

a

a

a

a

a
Figitre 2.3 - - Capabi l i ty s t r u c t u r e

‘I’hc existoncci ol‘ol),jccts itnplies othcr cap;il)iliti(!s. Any reference to a n ol).jcct also implics a reference
to the type manager Tor. thc ot3,ic;ct !tlc~c~.il)c:d i n the next section), and to the sys tem cihject manager .
The kernel hiis an iinplietl capability consis t ing of the sysnarne and access rights. This implied
capability tnay be used t o i n v o k e ccrtain operations (e.g., abort , initialize), and it may be used when
manilging the segmctit in \vhich an object resides. ‘I’hcse iniplicd capabilities arid references are all
used internally by the kernel and their csistence is not sccn by application software.

a

3. 0 tl-jec ts

0l)jccts are thc funtliinwtitul data ;i\istri\ci.ion in Clouds.
specifically their use

‘I’hc rat ionale \)(thinti the i r use, a n d
i n Cloud.;. h i t > Iwcn tlescribctl in other papers (e .g . , I Al lc834 , IAIIc8:3I)I,

- 4 - 4

Kernel Structures For Clouds

0

0

e

e

[.McKe83], [,Jone‘ig]) Otljects i n Cloiids iire p s s i u r unlike Ejects i n Eden lAlmcS31; there are no
processes resident inside the ol)jcct. ‘I’his section describes the structure of objects and the manner in
which they are created, deleted, and in which operations are invoked.

0t)jects can lie viewed ;is consisting of two parts: a n olijcct type manager and a n object instance (the
“type” and “instance,” respectively). The type manager consists of procedure codc which is allowed to
manipulate the object during creation and deletion of the instance, a template of the uninitialized
instance, and certain other \,its of inforination used by the kernel in object management. T h e type
manager operations a re invokcd to crc!utc and tlclctc instances of the object type, move instances of
the object from one locution to another , t i iot l i fy existing instances, and other related operations.

The type managers ;ire objects i n tticir owt i riqht. their associated type manager is par t of the kernel
and is known as the ohjvc/ r ~ (i r i u g (> r . ‘I’tiere is i in object manager in each sub-ke rne l which
communicates with all of the ot h v r otj.jc.ct tiimagers in the system. Figure 3.1 i l lustrates the logical
re 1 at i o ns h i ps a 1110 n gs t o t 1.j ec t s i I i s t ,i I ic cs, o t 1.j cc 1 types, and o tij cc t in a nag e rs .

Ohject instances consist of (la ta coniprising thv ol)ject, procedure cock which operates o n the clata
w tic n ope rii t io tis o ti t lie o h j c t c . t i 11 s t ;I ticc ;ire i i i v o li cd , acce ss ;I nd niod i f i c ;i t io t i i n fo r m a t i on ,
synchronizution varitihles (i f iippropriiitc), antl other irifot-mution related to the oti,iect instance. A s a n
optimization, thc procotlure codc for object instances can be stored in one single location fe.g., in. the
type manager) and shared t)y all o f tho activo instances. The object can lie thought of as composed of
the code (which m a y include action-or.icntcd operations such as cornmil and nhort), permanent data,
and volatile data (such ;is hvaps or st~tclis) which disi!ppeiit.s when the ot?ject is not i n use (see figure
3 . 2) .

To create a new ot,jcxt. the user lirst tlescril)c:s the object type using an appropriate applications
pt’ogi‘aiiiniing language. ‘I’tiis li)rms ;I tcmpl;itc of the data structures which compose thc da t a portion
of thc object. ‘I’ho u s (~ t . i i l s o c o d ~ s I’irticl ions ti hich opei~itc on this data . ‘I’hesc funclions import and
export arguments h y value o n l y ; i.cfci.c-ncc pariinictcrs iire simulatctl by passing capabilities by value.

The procedural part of the ohjcct deli nition may contain special routines for synchronization of access
to the object, support of’ atomic ac t ions , and initialization of new instances of the object. These
routines may be clcrivc:tl I’t.otii ;I s t i i n d i i t d sxstciii Iihtxt-v, o r the user moy program them specifically.
I~vcry type nianiigcit. c * o i i t < i i t i s I ’ t t t i (. t i c i trs Ii)t. cwating :I new ohject instance, clcIcIing tin old object
instance, and for initialilirig 11 new object itistiitice. k:acti recovoi~ible object niust also contain
functions to implement h~gi t in ing of action (BOA), abort , precommit, and commit.

Once the object impleiiic.iitfltion is written. it is compiled by the appropriate system conipilcl-(s). The
result w i l l be a l’ile of codo and tl;it,i N hich is passed to the sys tem object manager via a call through
the kernel interface. ‘I‘hc ot>,ject m;inag:r.l- will ch2ingc the type of t h e Iilc to ”type tiiatiiigcr” and will
t-eturn a n ol>.jet.t capability t o t ti(* n ~ t v typc iii;iticixcr.

ORIGINAC PAGE IS
OF POOR y - - y T

- 5 -

Technical Report GIT-ICs-84/09

Operation 1 +

Operation 2 ---f

.............. Code :::::::::::::: t Operation 3 +

.....................................

.....................................

Once the type n i a r i i i ~ v r h a s crtbtit id ; I s;cgii~ciit. it uses its data tc inplate and “ini t” function to
initialize the new ol).j(fict instaticx! ‘l’tiis i tsually i n v o l v e s set t ing sonic data values to initial states,
initializing the hciili for t tic o l) , j (~ . t , r’osctt ing a t i d defining synchronization variables, and creat ing a
skeleton VAhl (Vir t i i i i l Atldi.(~ss l l i ip - - w e section 5) which will be used to map t he object instance
into a process’s atit11 (‘ 5 5 s p i i r (* \vh(bti i i c y d (d .

3.3 I k l e t i n g Objects

- 6 -

Kernel Structures For Clouds

0

0

a

e

Kernel
Object

Manager

. . +. 6 . - . - . - . - . - . -

.. I . m . I . . 8
m I
. . I . . I

Other

Computers'
Kernel Object

Managers

a .. . -
I m m .. . I I ..

t
I I +

First instance

of object t ype

I' B "

+
Second instance
of object type

' I B ' I

Third instance
of object type

' I B ' I

E'iguixi 3.1 -- relationship of instances ilnd types

invoke the dclctc o p n t . i i t i t) t i . 1 his i h : i n csaniple of the usc of a n "iinpliccl" cuput)ility. 'I'o delete a n
ohjcct instance ttw U ~ C ' I ' iiiList h v c thc "tlclcte" right, however.

Type rnanugcrs arc 1 t 'c . i i t id o:liccl Iy lilic ol),jccts i f thc "delete" opcration is pcrformed on them. The
system object tnatiiigci. i c d s ;is t I N S typci inanager for all user-defined typo managers , and it is
rcsponsil)lc for perforiiiiit~ I ticw-ssiiry tlc:lctc opcr.ations. Note that the object manager has the
option o f checking thr. rcli~t.eiic.c count inside the type manager and issuing some warning to the usc'r
il ' it is non-/.em. 'I'hiil is, i t is possihli! to advise the user if tha t typc manager might still have
ou t s t and i ng i n s t anc(!s i n e s i 5 t.c n CL' .

1\11 operation is invoked o t i iiti i t l s t i i i iw hy making a ciill on thc kcrncl with thc crtpability to the object
instunce. the opcratioti n ~ i i n l ~ ~ i ~ . : i i i d (o p t i o n a l l y) :I list. of paramotkrs to the opcration. The kcrricl
ol).jcct i nanagc r \.vi I I first \ . (k r . i I) . t 1 i . i t t tic opcration niinit)er is in rangc and tha t t he capability mask

- 7 - e

Technical Report GIT-ICs-84/09
(I

contains the required tccess rights.
attcrnptiiig the operation is i thortc~t l (to I)i’cvcnt security violations and help contain errors).

I f the attempted access is riot valid, t he process or ac t ion

Next, the segment sj*stcm is preseiited with the object capability and requested to map the instance
into memory. I f the instance nitme is currently known to the segment system, then a mapping is
already known. Othei-\vise, thc. scgmcnt system searches the directory of every local active parti t ion.
If the instance is found, then the mapping is performed and the segment is now “known” to t h e
segment manager; future wfci.cnccts t,o t he segment wi l l be to the segrrient on the local parti t ion. This
search mechanism is tlescrit)cd in iiiorc rlt!tail in section 8 and in [Pi t t85) .

If the segment is not found loc;illy, the sc~gment system invokes a search module which a t tempts to
locate a copy of the scgmont clsewhcrc in the system. If unsuccessful, then the cur ren t action is
aborted since there is no way of deciding whether the desired object is locked, never existed, or simply
cannot be found tluc to soiiie rui1u1.c in the system. If successful, the reference causes the object to be
made “active” on the system where i t is found. Froin this point on, references to the instance will
continue to be mapped through thc so:ii.ch tnoclule. Future references will be mapped to a system
where the instance is itctivc.

Once the segment cont tiitiing t t i (% ol),j(Lct itist;iiice is made active, the segment containing the object is
read to find the niimc o f t tic t.vp(- t i i i i i i i i g c * i . for the instance. The type manager is then mapped into
memory in csactly tlic sit ine t i i i t i i i i (~ t . as t tics instance \vas niuppcd. The object instance may contain a
“hint” which can he us;c:tl to sp(.cd t h i h i tupping: a hint can iitdicatc the si te where the type manager
w a s found when t h e ol).jcct instiinc.c last ~x:fi~i~ciice.tl it.

Iiefercnces to cloned typc m,iniigt~t~s still occui. through the stantlard capability mapping mechanism.
Al l clones wil l have the csitct w i n (’ naiiicl and itre completely interchungeitble. Any reference can be
niapped to any available type iri:iii:i<cr.

\Vhcn ;I type managrt. is c lo t i td , its t.(tff:l.fnlice count 1it:Id is mai.l<ctl as ”not vitlid” both in the original
i i d in the clonc. When ;I dolet(* op~t.: i t ion is pcrformctl on the typc miinugclr, one of t h e clones will bc
dclct.cd. The :ipplication cotit, niiiy choose to warn the user tha t t h e type m a n q e r is a cloned ollject
ant1 there inay be o ther copies in csistt-nee. ‘I’hc cotlc !nay furtlici. note tha t 1hci.o may he undeletcd
object instances which could 111% i . c ~ n t l e ~ ~ d tisclcss by removal of the last clone.

(I

a

a

I

a

a

- 8 -

0

a

Kernel Structures For Clouds

4. Processes and Actions

4.1 Processes

e

The basic instrument of activity is t he p i ~) c c ~ s . A Clouds process is similar to processes used in other
systems. Each process represents iiii itlentifiable sequence of operations. Each process is represented
by a unique process c.otr/r.ol bloc-1; o r I ’ C I I . The I’CI3 for ii process is used to store the contents of the
machine registers when the process is not active. The PCU also holds pointers to the process’s stacks,
pointers to the s t ructures currently defining the virtual memory space of the process, and a pointer to
the object control block of the object tha t the process is currently accessing, if any.

A process is created when the kernel process manager receives a request for a new process. Each
request specifies a n activity that the newly-created process is to begin, and a pointer to a n activity-
specific block of paranwters for the process to use. The process manager allocates space in i t s internal
store for a new PCU iind i i new set of moniory maps (see section 5 for more details). T h e PCB and
memory maps are initi:ilizcd, arid t he pri)c(-ss stacks are also initialized. The system scheduler object
is invoked with a cupiihility to the procc~ss and the piwxss is acttled to the ready list for subsequent
dispatch and activation. A capiibility for the pt‘ocess is also returned to the activity which requested
thc creation of the proc(!ss. ‘I’hiit c~ipaI)ility m t i he iisctl to hitlt or kil l the process, change its priority,
or modify other operat i tix c tiaractcr.istics of’ t ho pi~occss.

8

a

0

,. I here is only oiic procc~ss iutiiiitig O I I ii t t i x * t i i i i (! Lit any oiic tiinrb. The other processes in ttic system a t
that machine iire eith(1t. linl<c.tl inlo tlicu r . , w (/ ~ list 01- they iire linliecl into the wai/ list associated with
wine ~;vnclironizntioti ilcm. T h t n tx~; i t l ,v list is ii list o f pi.occ~s;sc~s awaiting ii turn at the processor. The
reiitly list is maintaiiicd i n ii sctictlitler ol),jcbct acmuling to the scheduler’s queuing algorithms. The
process dispatching mechanisin for thc vit.tual machine invokes operations on this scheduler module
io obtain the nes t r c d y pt~)ccss or to ciicliic’w ii pt~)cess (millie it ready). ‘the scheduler object is not,
strictly speaking, a purt of the 1it:rnel. ‘l‘hcl-e may be one scheduler for many or all of the machines in
a Cloutls system, or t.tic.ro rnight IN: rnight hc one per machine each using a different queu ing
discipline on thoir t ~ a t l y lists. T h i s c~niihlcs the system tc; change scheduler modules and disciplines
without stopping so ;IS to a~l,just to c ~ h a i i g i n ~ configurations and workloads.

The kernel supports tratlit i o n i i l counting setnaphores, single and multi-mode locks, event tickets, and
timed events us means o f synctir.c~niz~itic~n. ‘I’hc pi~ocess manager can create new instances of each of
these items upon roqitest. Phch ;.iictit’oniz~ition item is associated with a wait list t ha t is a list of
processes blocked on that vari i i l) lc . . Whcn ii process blocl<s o n one of these items it is removed from the
tx!;itly list and liiil;etl i n t o th(8 t b n d o f thc wait l ist :issociatctl with thc item. A pointer to the
synchronization variablc is placed into the I’CH of the process for later reference. When a process is
unhlocked, i t is unlinked froin tho wait list and added to the ready list via a n invocation of t h e
sc hctl 11 1 e r.

-1.2 Actions

0 - 9 -

Technical Report GIT-ICs-84/09 a

manager is responsible for maintaining information about actions. It keeps a record of all objects
visited by each action during the lifespan of the action. I t handles the coininit and abort protocols
associated with actions. It is also responsible for ensuring tha t only processes operating in the context
of actions a r e allowed to touch recover~ible objects.

When the object i nan i i~c r recciveh it request for a new action it first obtains a new worker process
from the process manager I t enters the sysname of the process into a n active uction descriptor, and
assigns a n action nutnr to the ~ I X J C C S S That action name is copied into the I’CB of the process, and is
used to form a new capability to the iiction. This capability is then passed back to the requester. The
requester is not given the capability for ttic process; all requests to the process manager a r e made on
the action and through the object muiiagcr.

While a n action is active, t ho object tniinager notes every recoverable object touched by the action and
enters the sysnaines of those objects into the action descriptor. Should the action abort itself or be
aborted by some other process holding a capability to the action, the object manager will (eventually)
invoke the “abort” operation o n each recoverable object listed in the action descriptor. When the
action at tempts to prccommit o r coininit, the object manager will invoke the corresponding operations
on each of the objects listed i i i th(> action descriptor. Once a n action aborts or commits, i ts action
descriptor is deallocated and thc p r o c c s manager is called to reclaim any processes associated with
the action; by definition, an act ion can perform no more operations a f te r it has aborted or committed.

The synchronization of iictioiis i i n t l iiiultiple processes acting on behalf of the same action is left
entirely to each object acccssctl a n t i to ttic ohjcci manager. The kernel provides no direct support for
deadlock handling. These can I) (> r c s o l v c d through the use of t imeouts - - each request to create a n
action is acconipaniccl by ii v i t l u c sp(:cil).ing ;i maximum completion t ime. If the action does not
complete within that tinic in!orv:tI I t i (% i i i t is iihortccl by the ot).iect munagcr.

Clouds also supports srrhtclicjrrs. ‘I’h(:sc* iict lilic actions in virtually every respect except t ha t their
effects a r e not permanent until all 0 f . t ticir toplevel ancestor actions commit. An action is not allowed
to commit until all 01’ its suhiictions have completed by aborting o r committing. When a n action
aborts, all of its sulxtct ions : t i . (’ ills0 : i t) o r t c ~ t l . ‘I’tic algorithms defining the interaction of actions and
subactions are descrilml in I ,\llcS:jl, :is iirc the iilgorithnis for dealing with various kinds of network
and comm tin icat ions 1‘1 i I i t r c ~ s .

4

a

(I

(I

5. Virtual Memory

The virtual memory system niaintilins thc. binding of physical memory locations to references made
by executing proccsscs. In particiiliir, \ve itre interested in the inupping of locations inside Clouds
objects i n such ii tii;iniicr tha t \ve can involie the operations on objects and modify object instances.
iltidition~illy, w e wish io s u p p o r ~ shLirc>tl ol),jects, a n ernbedded kernel, and efficient management of
storage coupled \vi t h correct operation 0 1 ’ the xtioniohject mcchiinisms. ‘r hesc constraints have made
a major impact on the form o f thc underlying virtual memory structure. The resul tant s t ructure
hears some surface s i n ~ i l i i r i t i e ~ to the v i r t u a l memory st ructure ol‘systcms such as I I Y I l k 4 [WulT74]
and Accent il<;ishdl I

(I

- 10 -

Kernel Structures For Clouds

Object Space: PO Per-process Space: P I System Address Space
(objects, files, etc) (stacks, etc.) (shared kernel)

i A

e

e

0

0

e

Low addresses
... ”..

High addresses

’ , ,_

Example contents of object space

Figit t a t ? 5. I - - A p i ~ o w s s * s view of its address space

The system kernel spacc- is t t i c si i i i iv for c v c r y pi*ocess. Shared i tems such as the virtual memory
tables and process control bli~cI;> ix,sidc, i n thF systeiri space. ‘I’hc svst.cm qpacc is :I!SQ where r.l=st =f
the code which impletiii,iits t tic l \ i ~ i . i i (: l rmitles;. On the V a s , this corrcspontls to the a rea mapped by
the system page map.

Each of these address spices i s i ~ i i i p p ~ x l in ii siinilar manner . IZefer to figure 5.2 for the following
discussion ofcommon feat ures

Contiguous, related atltlresscs in ii proccss’ iiddi~css space a re mapped together as one “chunk.” For
csaniple, all the csecutul)le code in i i i i oh,jcct t ~ p c could he mapped a s one chunk, as could an ent i re
user s tack, or t h e cntir’c conl(~i i ts of i i lile. I+hcti ”chunk” is represented iis a n entry in a Virtual
Address M u p or V A M . ‘I’hcrc is o t i c ’ Y , \ J l clescrihing system space, one unique VAM for each process’
per-process space, and one 1’1251 [or cacti i t d i v e ol),iect. These V A J l s are referenced, respectively, by a
pointer in the system control l)li)ck, I)! i t pointer in cuch I T 1 3 (pi~ocess control block), and by a pointer
in each OCI{ (ohject coiilt.ol hlocli)

I<:tch VAhI h a s ii heiidt-r which points t o ii h;trtl\r.:ire page map. ‘l’tiis pointer is louded into the cur ren t
process’ pas:” iiiiip registckr t o ot’l’cact thc miipping indicated. That is, the page m a p t a b l e (Phl’l’),
contains the hartlwiii-c definctl 13ntrics neccbssary to define the virtual memory space in the physical
page frii mcs i i v ii i I it I) I c

- 11 - a

Technical Report GIT-ICS-84/09

. t
Start page

Knd page

Acccss cap.

Ptr, to SCI<

0

Starting offset

Ending offset

Segment LOC.

Usage List

Page LOC. List

I

End page

-
Virtual Address Map

Active

Seg men t

Hash

Table

Page M a p
Table

Page Location
Table

I

Page Location
Table

Starting offset

Ending offset

Segment LOC.

Usage List

Page LOC. List

Segment Control Blocks
W B)

Figut*ti 5.2 - - Cotiimon Features

contains the s tar t ing a n d c n d i n y p i g : tiuinhers o f the process address spacc descrihed l)y the entry. It
also contuins i i pointer to ii . W ~ H I (~ U I u i n t r o / /) lor/; or SC13, and the cap;ibilities that this process/ob.ject
has in relation to tha t segment (c q . , reiitl-only, rt:atl/writc, delete, ctc.) .

- 12 -

a

a

a

0

0

a

4

e Kernel Structures For Clouds

0

0

e

e

accessing only a few pages of ii inulti-megabyte file, there is no need to map the whole file segment
into the a&lrcss space. Iiistcd. Ilic SCI: would contain the beginning and ending page numbers of the
section that was being ~icccssccl ('l'tio \'A 11 entry would indicute the addresses within the virtual
address space where that segment would he n i u p p e d)

The SCC also contains pointers to V A I l w t r i e s referencing the scgnient (the usage list), and a
pointer to a puge Locatioii l i s t or 1'1.1,. 'l'hcre is one entry in the PLL for each page described by the
SCB. Each PLL entry indicates the status of that segment page (one of: resident & locked, resident &
unlocked, being brought i n (in-transit), hoiiig removed (out-transit), on the pre-page list, non-resident
and in the source partition imagc, non rwidcnt and on the paging partition, or not yet defined). The
I'LL entry also contains a location which is used in combinat,ion with the s ta tus to find non-resident
pages and remove resident pages. The fi.uinc num1)er of resident pages is also indicated in this list.

The relationship of these structures to orlo another niuy bc made clearer by presenting a brief scenerio
of hnndl inga page fault. Suppose :in active pi'oc'ess gets a page fault in i ts 1'0 (object) space. The page
fault handling code locates the appropri:itc V A l I by using the pointer located in the OCB of the
currently active object (a s noted ii\w\c, ii pointer to the current OC13 is in the PCI3 of the cur ren t
process). Nest , the f i i i i l t code conipiiws the piige iiurnhctr o f the fault with the ranges presented in
each VAM entry. \Vhcn the iippropriiite eiitt.~ is found, its pointer is usecl to locate the SCB which
descrihes the missing page. 'I'he offset f r o i i i the s ta r t ing page number in the VAM entry determines
thc rctlativc offsc.1 i n thc svg i i i t s i i t \ \ h i c . t i i , i i c ~ c d ~ ~ d .

The pointer to the page locatioii list i t 1 t l i c SCIi is used nest . The fault code uses the relative offset to
index into the I'LI, and ohtitin i i i i tbntry corresponding to the missing page. Fur the r action is
&tcrniincd by t he ciirrvri t s t ;it lis i)I' t t l (8 I I I i 5s i 112 piigcs:

the page is resicletit. This i i i ipI ic .5 t I i i i t t tic, p;igc w a s t)cing t>i.ought in a t the time of the fault ancl
has since arrived, or o l w the p i g v is ;ils~) i n use 1)s. sonic other process and the presence of t he page
has not yet been intlicatctl i n this pi.ocess's page map table. I n e i ther case, the frame number is
taken froin the 1'1.1. and inscrtl:tl i n l o t h t ~ proper place in the P,l.l'l'pointed to by the V A M . -

the pace is non-i.ositlcnt. I:as:cd on t tic locution information in the PLI,, and the segment
information present in thc SCI:, ;I iwluest is made to read the missing page into an enipty page
frame. The s ta tus of the pig(' i i i t t i t , l ' ld ld is ctiiiiig:fid to "in-transit" and the proccss waits until the
page arrives.

the paqe is prc-pitiy.d This iiiip1it.s that the p a g e was ~~cltlccl to thc prc-page list as a candidate for
removal. The page is ~ - c n i o v c d ftwni t hc pi'c-piige list :ind its s ta tus is changed back to "resident."
'I'h c 1' 11 '1' is 11 pc la t et 1 ii pp ro 1) I' i ; i t (3 1 y .

the paze is in- t ixnsi t . This iiiiplios t h a t so i i iv other process has already rcqucsteel the page. The
process waits until i t arrives: tlic. rcqu~~st i i ig p i ~ ~ ~ s s will pcrfoi.ni the niapping and this process
wi l l awiilicn to find the p a ~ e rcssidciit.

the page is out-transit . This implies t h a t the page is currently being written out to secondary
storage to free t he franie i n \vh ich i t \viis residing. S'othing can be done about reading the page
back in until ;I stabilized iniiixt* is p r i w j t i t on the secorit1:ii.y storugc. 'I'hcrcforc, the process waits
until t he transfor. o u t of nicii1oi.y is c o t i i p l v ~ i ~ . Wh(bn t h e process is awal<cncd, it w i l l mark the page

13 -

Technical Report GIT-ICS-84/09

as resident and not modified since the resident version corresponds to the version in secondary
storage, and then continue, or it wil l \)ring the page back in.

In each case, locks are used to ensure consistent results during concurrent accesses.

5.2 Managing Physical P a g e Frames

In order to efficiently provide e inply pig:" frames to satisfy page faults, it is necessary to keep track of
the s ta te and use of each page frame. This is accomplished through the use of the physical page table
or PPT. The PPT is organized a s an array with the index of each clement corresponding to a physical
page frame; PPT entry 5 corrwponds to frame 5, and so on.

Each entry in the I'P'I' contains inLi>rmution about the s ta tus of the page frame, and l inks to other
page frames in the same state. This is accomplished by putting forward and backward link fields in
each PPT entry; each l i n k cor r t~~pont l s to the index of the nest (or last) PPT entry in a doubly-linked
chain of similar entries. 'I'hcrc. i i w four such chains threaded through the PPI': the active frame list,
the pre-page frame list, t tie fro(: frxri ic . I i + t , atid t tic locked ftxnie list.

The active frame list cotitai:is cnt rifas ix~li~t.r.iiig t o page frames which a r e currently occupied and in
use. As pages are brought i n i n response to pigc faults, thcy are added to the end of this list. Each
entry in this field also has i t pointer to ; \ t i SCR doscribing the page, and a n offset field which can he
used to locate the ptgc's t.ntry in t h t s l ' I , l , ;issociatot\ with the SCR.

(I

The free frame list is simply ;I list o f currently av:iiluble page frames. Kcquests for empty page
frutncs arc satisfied with t t i c . (~ t i t r i (~s i t i this list. iissutiic that thc list is never empty; if necessary,
we will suspend all o t Iicr pro~x~ssi~s ; i t i t l r u t i ;I piigtb rcclaiiiintion process t o keep the number of free
pages aho ve a nt i niiti 11 I 11 t h res ho I tl .

The locked frame list contains ctitrics c~): . t~(~s~)~)t i (l i r ig to pugcs which cannot be thrown out of memory.
This includes pages involving iictivc tlcvicc I/(), piifits containing critical code or da ta (like the PPT!),
and pages which a r e being kept fr4)iii pixi i ix duo t o pcrforniance considerations.

,, I he pre-page list contains cntr-it!..; \$ hich : I W c;intliclatcs for removal from menlory , thus freeing those
franics. The page rcclii:nat ion i) i . t) c . (s s \vi11 r (s i i i o v (< (:titries from the head of the active frame list and
add them to the ta i l of the p i x - p : \ s v list, while a t the sanie tiiric tracing down all PMTs which
reference this page and i i i ark i t i s i t ,IS tiotit~csiclc~nt. Pages are removed from the head of this list and
added to the free list after tht,it- contotits have Iwcn written out to secondary storage, if necessary.
I'uges referenced before thcy rc.;icti tho h t 8 ; i t l ol' t he pre-page list get reactivated and moved back onto
the active frame list. This whole Incchanisni implcincnts a form of FINUFO (First In, Not Used, First
Out) paging algorithni. (Note: i f thc Viix hat.cl\var.c supported a "referenced" bit in i ts page tables, this
coli Id he avoitlccl I)

4

ORIGINAL PAC.E IS
OF POOR QUALITY 14 -

l

a

Kerne Structures For Clouds

of segment operations. Copying of i tems from one place to another is always accomplished with
segment operations, and so on.

A segment is active i f i t has been iwcnt1.v accessed or wiis present in memory before heing referenced.
The SC t3 for the segmcnt indicates which p ~ ~ o c e ~ s e s are referencing it, and which partition driver (see
below) needs to be invoked for opcratioiis on the segmcnt. These S C l k a r c allocated and initialized
whenever a segment is made active (i .e. , referenced and not currently active). The Active Segment
IIush Table hashes segment capabilities into pointers to the corresponding SCRs.

Each segment representing a permanent item has a version resident on some partition. A parti t ion
corresponds to some block of space availiiblc on a secondary storage device. In general, a parti t ion
could exist on a disk, on a tape, or in D block of special memory. Usually, a partition will be blocks of
space on disk device(s1.

A segment on a partition is couiposctl of it segment header and a da ta area. The segment header
contains information ahout the segmcnt, such a s the defined type of the segment (e.g., client object or
fife), a capability to the type iiistiiiic(n f i j r this wgiiicnt, time of creation, and other such information.
The data spuce is the actual contctiits o f t tic scgiiieiit.

Partitions a r e coniposectl o f ;I part i t ion ho;itlc~r which describes the partition (record size, extent, ctc.), a
free list whose forinat is p t r f i l i c) n - t l i ~ i) ~ ~ i i t l e t i L , ;I directory, directory entr ies , and d a t a records
containing the segnicnts. ‘l’tiih strucf L I I Y - is i i i o i ‘ o frilly t1escril)cd he low.

Ihxacise of the constraints necessury to ciisiirc the recoverability of objects and to support atomic
actions accessing those ol),iccts, partitions ;ire not allowed to cross device bountlaries. That is, each
partition niiist he fully coritiiintd \vithi:i one device. It is possible to locate the directory and free list
for a partition on a tlcvicr* cliff~*ron! froii i tlic. directory cntr ics and data, hut this adds i t great deal of
complexity and tlel:iy iri I I I (, o p (~ i . ; i t i o i i 01’ I tic part ition.

Volatile and rccoveixI~Ii~ s i~gi i i (~ i i t s c‘iiit i i i i . ;cd fi.ttoly within a partition, but some partitions will not
be capable of supporting r e c o v c r ~ ~ l ~ l ~ ~ sogcbnicnts and will be so marked in the partition header. For
instance, partitions on ;t tape arc not ,ihIe to support recoverable objects. In general , a parti t ion
supporting recoverable entries n i u ~ t rc+id(% on ii device which:

1) ~illows i ~ ~ ~ i i d o i i i rc~i i t l s ; l i l t 1 i v i . i t (- s .

2) d o ~ not p (~ i . f o r i i i i i i t (> i . i i ; t l l)tifl*iti.iiig o f \vi.itos oscopt by iipplication choice;

3) pro v i cl e s ;it o i i i i c si I i SI o - reci) i d w r i t e s .

Condition 3, above, ii1:i.v lw rcliisetl I)! use o f rcplicatcd writes to other devices: duplication of writes to
implement stable storage i> a stantl;\rct mcthod when dealing with potentially unstable devices and
critical applications I I,;iiiip81 I.

I’artitions a re adtlctl 10 ttici s;stc.iii I)! ~ t z o u i i / i r ~ g ~ . The operation to mount a part i t ion involves
mapping a psi-titioii tli.ivtri. to ;I (levice drivc’i. ;ind scheduler (which m a y a l r e a d y be act ive wi th
another partition o n t t i (! s;iinc tlcvicc). This i.clationship is shown in figure 6.1. The device dr iver

- 1 5 -

Technical Report GIT-ICs-84/09 e

e

I

k’igui-tl ti . 1 - - A mouiitet! partition

6.2 Recoverable Segmriits

e

- 1 6 - OK1Gr;iki PAGE IS
OOE POOR QUALITY

a

t

Shadow
Directory + Directory

Entry

td*
Entry

1

e 0

e 0

*+ 0

4 0

L

I

I

2

Kernel Structures For Clouds

a

e

*

Parti ti on
Header

*
Partit ion
Free List

. . Parti ti on
Directory

0. , W

Data pages I .
Figure 6.2 - - I'artition Organization

a

0

found i n record zc1.o 01.1 tic, pirtitioti 'l'hc~ heatlcr contains information about where to find thc free list
and directory for thc p i r t i l i o t i , . i r i t l ivticthcr the partition supports recoverable segments. The exact
form of the free list is not rc:ill> i i i i p o r t a i i t a5 long as it is possihlc to m a p it into nictnory; a hit map is
prol)ably t he nios t rciisoiiiih I c forti i for ;I tl isl\ partition.

The partition directory consists 01' sc:gtiic.nt ii;inics (sysnunics) and the recoid niinit)cr within thc
partition which contains t t i c dirvc~ti~ry (, t i t r y f ir that scjirnciit. 'I'hc partition directory may hc inany
records long, and cuultl I)c i) t . q i t i i / . (d its soiiic foriii of sorted tree rather than as a simple list. To
simplify the discussion. ~ v c iissiiiiic' hcro t h a t the directory is simply a linear list of namckntldress
pairs.

Each directory entry consists n a m e and typc information, and a list of the records which make up
the segment. This list could also hi, ii1an.v ix:coids long. ICach entry in the list consists of a flug field
and a record address which points 10 the c.or.r.cs;pi,ncling data record within the segment. In acldition to
this information, the hcaclvr c . o t i t i i i i i s , I lic:ld Lvhicti could contain ;I pointer to a s h a d o w vcrsion of the
scgnicnt.

0 - 17 -

Technical Report GIT-ICS-84/09

When the partition is mountctl, the cod(: for the partition driver checks the directory en t r i e s to
tiiscover unconitnittctl antl ~~r~:cornt i i i t1~~~1 en1 t.ic.s (a s described shortly). If any such entr ies a r e found,
their processing is conipletcd. ‘I’hcn ii volatile, in-inerrlory copy of the free list is made. The partition
directory m:iy also he processctl to piwvitlc. ii list of names of ohjects present on this partition.

When ;I read reference is made to ~i t~ecovci~able segment in this partition, it is only necessary to use
the directory entry to locate the tippropriatc data page and read it into memory. If the reference is a
write reference, then it is necessary to shadow the segment until the referencing act ion e i ther
commits or aborts. Note tha t in the following description the operations undertaken a r e all done
internal to the partition driver ancl the calling action never sees anything other than a consistent
view of the otiject.

When the first write to a recoverable segment is done by an action, the partition driver makes a copy
of the directory entry o n the partition. I C x h data record pointer in this shadow entry is initially the
sattic :is the corresponding pointrt- in the perinanent version. Suhsequent writes will be done to newly
allocated records containing copies of thc corresponding permanent data record. The shadow directory
entry is changed to point t o t h (w I ~ L ‘ W s;h;\ctow (lata pages. After the shadow is created, the permanent
version directory entry is changcd to include :i pointer to the shadow a n d a status flag indicating tha t
it is k i n g shadoivctl . II‘ i t crash occurs anytime between this point and the time the shadow is
committed, the code tvhich cticbclcs t h o tlit.cc.tot.y during partition mount will discover the shadow and
rcniovo t tic: poi n t t‘r.

‘I’tic records allocatcxl for tIi(3 sti;ido\v si.gtnc:nt i i w all taken from the volatile free list held in memory.
I tic actitill I’rct: list o n t h e p i r t i t i o t i is r i o t upd;itc.d csccpt during the actual commit of the shadow, so
any fiiilirrc sinlply l o s c b s t h c vol : i t i l (. l’rec. list and t h t : i.ecortls occi ipid h y the shndow remain marked
;IS free in the perniancnt free list on t h c partition.

,.

I f i i n ii1)or-t occurs it is nccess;ir,v to rciilove the pointer in the directory entry for the permanent
version of the object a n t i m a r k ‘111 ol’thc recotds of the shadow as “free” in the volatile free list. When a
precommit occurs, the status Ilcig i n the perni;iticnt version is updated from “being shadowed” to
“prccommitted shadow p r c w n t . ” I f :I crash occiirs hefore ;I commit or ahort, the code which mounts the
partition wi l l discovcbr t his pr(w)inri)il t c d sognicnt. a n d then tlctorminc. whcthcr to complete the
commit o r a h r t I);is;cd on i t i I ’ o t ~ t i i ; t t i o t i f t , o i i i ot tier tnachincs i n thc i i c t t .

When a commit occurs. tho stat u s of thtl shutlow is changed to “permanent” antl its shadow pointer is
set to point to the old pct’tii;\ti(~tit \ - c b t . s i o t i (th is ciiti h! clotie in ;I single t.ccorcl write). Nest , the pnrtition
directory is written t o poitit t o t t i t : n ~ w p(~i.nixnent vt?rsia)n. S c s t , the permanent free list is updated to
indicate that the rccoids usccl i n t hc ri(’\v per.tnanent vcrsion iirc itnavailiible ancl tha t the records
used by the old pei’mancnt vcrsioii ;\re I’I~c.~: the volatile version in nwrnory is likewise update(\.
I.astly, the pointer in the dircctot.y tbiitt’y for the new permanent version is set to null. I f ii crash occurs
a t any point in this p t w i ~ s s i n ~ I Iii, conitnit c:in lw continitccl from thc! ~)oin t of failuro when the
partition is nes t niountctl.

(I

4

4

4

a Kernel Structures For Clouds

7. Network Communications atid RI'C
a

e

e

e

e

0

7.1 Network communica t ions

Each machine in the Clouds iiiiilticompiitci. may he connected to one or inore other machines in t h e
systcni by any number and kind of cotnmunicution channel. The nature of the connections is also
immaterial , although it should be olwious that a minimum number of connections of sufficient
bandwidth will enhance ultiiiiate performance. The prototype sys tem will have t h e individual
processors connected by a common high-speed backbone and by an Ethernet. Multiple I'lthernets and
asynchronous communications lines m u y nlso be accommodated.

Communication between individual siil)ker.ncls is handled by a replicated communications manager,
one per suhkernel. Kach subkcrnel niulics communications requests through the single interface
presented by its copy of the coniiiiiiiiic~itions manager. Based on the destination and na ture of the
request, the cornniunicat ions iiiiitiiig(Si. t-tioows t tic comiii~iiiic~itioiis channel(s) over which to send the
message. 'I'hc coiiiinuniciit ions iiiiiiiii:(si. dctvi.iiiin(!s ;I transmission channel bused on message size,
message priority, cu r ren t comiiiuiiicat iotis conligiiwtion and error counts, and load information. i l

fixed-size header is pi-cpenclctl to t hc d a t a portion of the message, and the communicat ion is
transniit ted over the appropriate in(. '(1. 111111.

There is no guarantee that iiicssiiges arc clc!li~orctl 1)s' this coinrnunications system to the appropriiite
software on a remote node. Aclcno\r.lcd~enicnts must he clone a t a higher level, if desired; t h e
coni in i i n icu t ions d r i \fer on I y sti pi)o 1.1 s ha i d ivi i IT - le vc I ack now I et1 ge t i 1 e n t s . 'I'h e r e arc a 1 so no
guarantees of delivery ortlcr or assut~iii~ccs againbt duplication dur ing t ransmission. T h e only
-., rauullmptions .,..... !>eing n:u:!c i;; thc < ! (: . G i < i i <,r :h~ Cliiiids ~c i i i i i i iu i i i c~ i i i o i ib sysiem are:

-- that it is estrcniely unlikely t h i i t t tic nct\vork wi l l bo partitioned into isolated segments;
- - that i f a niessago i i i . i * i \ (b > ; i t ;I iii,ic.liiiic, i t is possihlc to tlc~terininc if it arrived uncorrupted;
-- messages arr ive a t their ti(1s;t inat ion i n sinall, finite time or else arc lost forever;
- - the overall probiil)ility ofc.or.t.uptrd 01' lost messages i s small.

Incoi i i in~ mcssoges iire delivcrcd to Ihc commiiiiications mnnagcr by individual device drivers and
signalled via device interrupts. 'I'h(1 cciintnirnirations manager determines the nature of the incoming
message i int l passes it to the appropriiitt, <bl),lc-ct 01' process within the siihkerncl for fur ther action. 'rhc
communications manager t l o c ~ s no p i v t ~ ~ ~ o l c*ticbcl.;ing wtiatsocvcr other than clctcrmining tha t t h e
message ai.rivcd intact (usu;iIly i iidic.;tt 4.d h y i i h i i i d w i i w status code) and that the message w a s
actually destincd for this siihl\crnel. l i i i iay use the header information present in each message to
update its otvn internal tahles.

- 1 9 - e

.-

a
Technical Report GIT-ICs-84/09

systems of the availability of commiinicutions over this path, and the responses ellicited a r e used to
identify potential destinations for future messages.

7.2 R e m o t e P r o c e d u r e Calls

One of the operations available on the comtnuriications nianagcr is tha t of the remote procedure call
on a n object. Normally, this operation is invoked by the object manager when a n invocation is
attempted on an okject which is not present on th i s machine. The object manager therefore reformats
the a t tempt into ;in IiI’C oper;it i o i i on thc coniii~iinicntions inanagcr. A capability to thc oliject, a n
operation number and a pointer to ‘I parameter block (i1sually jus t the cirrrcrit stack frame of t he
caller) a r e the arguments to the i-all on the communications manager. The communications manager
constructs a message consisting of the capaliility and operation number, and a copy of the parameters
to the object (remember tha t all parameters in ob.jcct invocations are passed by value). This message
is then sent out o v c r ttic appropriiitc coinii~itnicutions challnel(s) and the calling proccss is blocked
until a reply is rccei\ed. ,\ uniqiie identifier is associated with the niessagc to identify the response.

When the reply iiicsstigc is rccc.i\ oti ;it thc t) r i x i i i i i l niacliinc, thc commiriiic~itions manriger a l te rs ttle
state of the Iilockctl reyiic-;ting process to inclic:itc thc location of the reply message, and then the
process is un1)lockctl. It retrieves t tic. rcply information, ;iItei.s its slack and registers tis indicated by
the replv, and then return?;. Tho \cholc piwccss o f cull and return looks exac t ly like ii local (a l though
possibly slow) i n v o c a l ion.

8. Ob-iect Search ing a n d Invocat ion

One of the niost iniport;iiit fc~;itiii’c~s oI’ol>,j(y:t.s i n Clouds is that every invocation enibotlics an implicit
search. N o ;issiiiiip~ ioiis L L I X S niiidv iihoitt t h o location o f ot).jccts. In fact, it is entirely possiI,Ic that
objects may i i i o v c ft-oi i i iiiacliiiie to ni;ic.liinc Iwiwccn invocations. ‘I’hc ittiplicit search also allows
inore dynamic iise of cloned ol).jcc.ts a n t 1 ;iItern;itc comniitnications pathways.

When a n ohject is invoLed, the object nitinager searches the Active Object Table for a n e n t r y
matching the nainc of the ot?jcct. I f such ; in (2iiti.y is not found, then a new entry is iillocated and added
with a set of default valucs. I f t tic. i i ; i i i i (s i h i’ountl i n the table, then the c:nt,rS contains a point.er to one
of two things: a n OCII (Ol),jcct Cc)iiti.ol I % i ~) c k) 01. ;I seuroh iilcitlule. l f t t ic pointcr is to an OCIf, then the
object is present on this mxh i i i c . < i t i d i > (‘ i f h c . r ciirrcntly active or w;is , just recently active. In e i ther
ciise, the OCR contains a l l ~f t t i c s t i (u ~ ~ > : i t . y inforni;ition to bring the ot,ject into memory and map i t
into the virtual a d d i ~ s s s p ~ i c c I) I ’ (t i t> r .oc l i i (*> t itis p r o c c s ~ .

a

a

a

4

4

4

- 20 -

0
Kernel Structures For Clouds

a

e

locally, then the pointer is altercd to point to the network search module and tha t module is then
activated.

The network search rnodule uses civail~il)lc infortnation about the configuration of the network and
the availahle communication paths to seck the object on some set of remote machines. This search
operation may actuallv be done as ‘1 “search and perform” operation to save time, with the parameters
for the K I T included with the 5earch messagc. I f a remote si te receives such a search message, i t
a t tempts to find the ohject locally. I f the ohject is found, it is made active locally and the operation is
performed a s ii normal l<l’C.

I f the network search tiiodiilc fails to lociitc tlw ohicct on any remote machine it re turns a simple “not
found” indicator to the requesting pi-ocess, h r t i i i g it if it is a n action. It is not possible to determine
at this point whether the ol)ject does not exist , exis ts on a processor which is cur ren t ly not
communicating with this machine, or whether the object is currently not available due to action
visibility constraints.

I

Active Object Table
Mach i n e ” A ‘ I

-.-.-.-.-

m Instance
1 I I I

---b

\
\
\

lnsta n ce

Active Object Table
Mach i ne ’ I B ‘I Machine

iiu u nda ry

The search strategy may w t b l l Iw optiniizcd somcwhat through the ~ i s e of hints. Once a n object has
been found ant1 made active it is pt)syit)lc to include ii hint with the c n t r y in the active object table on
the calling machinc. I~’utirrc rc~(~rvtic(!s 1 0 I t i o ohicsct can he tried first o n the hinted-at inwhine since
that is the last known locution ol’tlio ol),ic$ct I t iiiiiy i i l s t~ lie possil)lc to derive hints in other ways: this
area will be the subject of I‘urther. resoarch I) ? the Clouds group. lf’itts85)

9. Kernel Interface

0

Conceptually, the kernel interl‘ice csteiids ;ICIY)SS machine boundaries and esists on each processor
within the Clouds sys t em. In actu;ility, the i i i t c * i . l ‘ x c is replicated on each machine. In ou r prototype,
the intcrdlcc consists 01’ wrvicv t . i i l l s \\ 1iic.h cti , i i iq: the ~ ~ t ~ o c e s s o ~ ~ inotlc to the kcrnel s ta te and then
cxuminc the argumr.iits for validity. I\;t:i.ric.l cxlls (including object itivocution) use ii protected pcr-

- 2 1 - e

Technical Report GIT-ICS-84/09

- 2 2 -

user stack to hold return state infortnation. calls by code within the kernel to other par ts of the
kernel a r e done directly and avoid the overhead of a system trap.

In general , each kernel op(!ration requi iw one o r 111ore capability parameters specifying what is to be
done. The kernel interface maps those capahilitics to simpler operations to be performed by specific
subkernels. Most kernel operations a re done by actions dispatched by the interface. This allows better
error containment and prcvents kernel operations from being only partially completed. The actions
so spawned operate intlepondcntly of the reqitesting process or action. This mechanism helps simplify
the design of the distributed aspects of the kernel, especially when dealing with kernel services being
performed on remote systems which may possihly fail in the midst of the operation,

As an example, consider a rcquest to the kernel to move a file from one parti t ion to another. T h e
request to the kernel would inclitde ii capahility to the file and a capabi l i ty to t h e des t ina t ion
partition. The request docs not require the specification of any specific machine names or locations.
The kernel will locate the file and parit ion based on the provided capabilities. The movement of the
file will occur as part of an action, with the copy being done with scgment operations to read and write
pages of the file. Should the coriiiiiunications channel or one of the processors fail dur ing the transfer,
the action wi l l tie ;ihortcd i i n d tlw p;irtiully transferred file \vi11 he erased from the dest inat ion
partition. I F the dwtiiiiition 1)ilt.I i t i o t i docs not have enough space for the lile, the action will abort ant1
the space w i l l 1w frccd. Othoi . v r t ~ o t x i\ct i n ;I similar niunner with appropriate error codes being
returned to the callcr. i f possihlo.

10. Conclusion

This’ paper has presented ; i n overview of tho i n t cmul struct1tr.c of the Clouds k e r n e l . l‘his
presentation has also given i in indication of how these structures wi l l interact in the prototype Clouds
i t i i~Iei~i~!ti t~it ioii . lliiny specific: dctiiils have yet to he dctct~mitictl atid Liwiiit experimentation with a n
act ita1 ivoi-k i rig systcm.

1 1 . Keferences

(I

(I

(I

(I

(I

(I

e Kernel Structures For Clouds

a

0

0

[Jonc79] Jones, A ti., “‘l’he Ol).ject Model: A Conccpluul ‘I’ool for Structur ing Software,”
Operating Svstc>rns: A n Advanced Course, Springer-Verlug, N Y , 1979, pp. 7-16

~I,amp81] Lampson, 13. W., “Atomic Transactions,” 1)islrit)utcti Svsterns: Architecture and
Irnplement:ition, Springcr-Vcrlug, N Y , 198 1 , pp. 246-265

[Lisk831 Liskov, I{., and I < . Schcifler, ”Guordians and Actions: Linguistic Support for Robust,
Ilistribiited Prograins;,” ,,\(,’ill ‘Z’OI’LAS. Vol. 5, SO. 3, J u l y 1983

[McKe83] McKcntIry, 11. S., ,J I’ Allchin, a n d W. C. ‘I’hibault, “Architecture for a Global
Operating Systeiii,” 1I8~K1+~ Irifoconi, April 1983

[McKe84J 31cKenclry. 11. S., “Clouds: A Fault-’l’olerant Distributed Operating System,” IEEE
[lis t ri bu tctl Process i ng ‘I‘cichn ical Co mini t tee N ewsle t ter , 1984

I Pi t t85 I l’itts, I) . V . , ”Sitniitig i i n c l %iii~Iiiiig in i i Ilistrihiited Operating Systcrn,” PhD Thcsis,
School of Informiit i o n i i i i t l Coniputcr Science, Ccorgiti Institute of Technology, in
progrws - - 195.5

[Weit1831 Weihl, it’. i i n t l 1 3 . I,i>l,ov, “Spwificution uud Impleuicritation of Keilicnt, Atoinic Data
r , I ypes,” Syiiiposiuiii o i l I’i.ograrniiiing I.unguagc I ssues i n Software Systenis, .June 1953

- 23 -

